首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Studies of intracellular traffic in yeast and mammalian systems have implicated members of the Rab family of small GTP-binding proteins as regulators of membrane fusion. We have used the patch clamp technique to measure exocytotic fusion events directly and investigate the role of GTP-binding proteins in regulating exocytosis in mast cells. Intracellular perfusion of mast cells with GTP-gamma S is sufficient to trigger complete exocytotic degranulation in the absence of other intracellular messengers. Here we show that GTP is a potent inhibitor of GTP-gamma S-induced degranulation, indicating that sustained activation of a GTP-binding protein is sufficient for membrane fusion. We have found that synthetic oligopeptides, corresponding to part of the effector domain of Rab3a, stimulate complete exocytotic degranulation, similar to that induced by GTP-gamma S. The response is selective for Rab3a sequence and is strictly dependent on Mg2+ and ATP. This suggests that sustained activation of a Rab3 protein causes exocytotic fusion. The peptide response can be accelerated by GDP-beta S, suggesting that Rab3a peptides compete with endogenous Rab3 proteins for a binding site on a target effector protein, which causes fusion on activation.  相似文献   

2.
N F Lim  M C Nowycky  R J Bookman 《Nature》1990,344(6265):449-451
The release of neurohormone is widely thought to be exocytotic, involving Ca2(+)-dependent fusion of secretory vesicles with the plasma membrane. The inaccessibility of most nerve ending has so far hampered direct time-resolved measurements of neuronal exocytosis in response to brief depolarization. By using 'whole-terminal' patch-clamp and circuit-analysis techniques to measure membrane capacitance, we have now monitored changes in the surface membrane area of individual nerve terminals isolated from the mammalian neurohypophysis. A single depolarizing pulse leading to Ca2+ entry through voltage-gated calcium channels, rapidly and reproducibly increases the membrane area by an amount corresponding to the fusion of 1-100 secretory vesicles. The magnitude of the capacitance increase depends not only on Ca2+ entry and buffering, but also on the pattern of stimulation revealing facilitation, fatigue and recovery of the release process.  相似文献   

3.
L J Breckenridge  W Almers 《Nature》1987,328(6133):814-817
Exocytosis, or the fusion of cytoplasmic vesicles with the cell membrane, occurs in nearly all eukaryotic cells, but its mechanism is not understood. Morphological and electrophysiological studies have suggested that membrane fusion begins with the formation of a 'fusion pore', a narrow channel across the closely adjacent membranes of vesicle and cell that forms the first connection of the vesicle lumen with the cell exterior and later dilates to allow release of vesicle contents. We used the patch clamp technique to study exocytosis of single giant secretory vesicles in mast cells of beige mice. The first opening of the fusion pore was found to generate a brief current transient, whose size and direction indicated an initial pore conductance of about 230 pS and a lumen-positive vesicle membrane potential. In time-resolved a.c. admittance measurements, the pore conductance was found to increase to much larger values within milliseconds, as if the pore dilated soon after opening. We conclude that the earliest fusion event may be the formation of a structure similar to an ion channel. Its conductance is of the same order of magnitude as that of a single gap junction channel, the only other known channel that spans two membranes.  相似文献   

4.
在原代培养的大鼠肾上腺嗜铬细胞上,综合运用细胞内钙测定法和全细胞膜片钳法,以检测膜电容变化为手段测定单一肾上腺嗜铬细胞的胞吐过程.通过施加+20mV去极化时引起的钙电流,对细胞膜电容的变化以及细胞内钙浓度[Ca2+]i变化的同时检测,多方位地确定影响细胞分泌的因素.  相似文献   

5.
H A Kolb  M J Wakelam 《Nature》1983,303(5918):621-623
The concept of purinergic neurotransmission, first proposed by Burnstock, has been confirmed in various cell types. We show here, by the patch-clamp method, that external ATP in micromolar concentrations (1-100 microM) activates cation channels in the membranes of fusion-competent myoblasts and myotubes. In cell-attached membrane patches of myoblasts and myotubes the mean number of simultaneously activated channels increases with time after external ATP application. In myoblasts only one population of channels having a mean single-channel conductance of gamma=43 pS was found, while in myotubes two populations with gamma 1=48 pS and gamma 2=20 pS were observed. Treatment of myotube membranes with acetylcholine (ACh) or carbachol resulted in two populations of channels which had conductance values and voltage-dependent mean channel lifetimes similar to those produced in response to ATP. The results show that embryonic skeletal muscle cells contain cation channels sensitive to ATP and provide evidence for a neurotransmitter-like action of ATP on these cells.  相似文献   

6.
In micropipette aspiration experiment, increasing mechanical stress applied to cell membrane induced degranulation of mast cell as well as a current that could be inhibited by an inhibitor, which is specific for the transient receptor potential vanilloid (TRPVs) channels. To determine the sensitivity of TRPVs to membrane strain and tension, and to gain new insights into the activation mechanism of TRPVs, finite element models of mast cell and molecular dynamic simulations of human aquaporin-1 are presented. During the finite element simulations, the cell membrane sustained to micropipette aspiration was simulated, and the strain distribution along membrane thickness direction was obtained. Besides, combining the finite element models of osteoblast aspirated into micro- pipette and other compared models, we examined the relationship between cell mechanical stimulations and mechanical attributes and presented a new perspective to determine the cell equivalent elastic modulus. Consid- ering the indetermination of TRPV crystal structure, human aquaporin-1, one kind of the channel membrane proteins, substituting for TRPV, has been studied with molecular dynamic (MD) simulations, under different external lateral tensions which have been obtained in mast cell finite ele- ment simulations, to investigate the mechanical stimulation effects on the membrane channels. The simulations show that human aquaporin-1 undergoes significant conforma- tional change and expands in accordance with lateraltension, which not only confirms the tendency of the pre- vious electrophysiological experiments but also leads us to a better understanding of TRPVs. The multi-scale study combining finite element simulation and MD simulation is a significant breakthrough in the field of mechanical mechanism in cell system.  相似文献   

7.
Exocytotic secretion requires the interaction and fusion of secretory vesicles with the plasma membrane. This process could be mediated by specific recognition molecules acting as intracellular, membrane-bound receptors and ligands. One possible component of such a recognition site on the plasma membrane is a protein of relative molecular mass (Mr) 51,000 (51K) that has been isolated from bovine adrenal chromaffin cells. This protein binds strongly to chromaffin granules, the secretory vesicles of these cells. To determine the function of this membrane-anchored chromaffin granule-binding protein in exocytosis, we tested the effect of intracellularly injected antibodies on secretion. Here we show, by two independent techniques in two different cell types, that antibodies against this protein inhibit exocytosis. In rat pheochromocytoma cell cultures, monospecific antibodies, applied by erythrocyte ghost fusion, impair the release of 3H-noradrenaline. The same antibodies, introduced into individual chromaffin cells through a patch pipette, block exocytosis, as revealed by the measurement of membrane capacitance. These results demonstrate the functional involvement in exocytosis of a plasma membrane protein with high affinity for secretory vesicles.  相似文献   

8.
Y Maruyama  D V Gallacher  O H Petersen 《Nature》1983,302(5911):827-829
Nervous or hormonal stimulation of many exocrine glands evokes release of cellular K+ (ref. 1), as originally demonstrated in mammalian salivary glands2,3, and is associated with a marked increase in membrane conductance1,4,5. We now demonstrate directly, by using the patch-clamp technique6, the existence of a K+ channel with a large conductance localized in the baso-lateral plasma membranes of mouse and rat salivary gland acinar cells. The K+ channel has a conductance of approximately 250 pS in the presence of high K+ solutions on both sides of the membrane. Although mammalian exocrine glands are believed not to possess voltage-activated channels1,7, the probability of opening the salivary gland K+ channel was increased by membrane depolarization. The frequency of channel opening, particularly at higher membrane potentials, was increased markedly by elevating the internal ionized Ca2+ concentration, as previously shown for high-conductance K+ channels from cells of neural origin8-10. The Ca2+ and voltage-activated K+ channel explains the marked cellular K+ release that is characteristically observed when salivary glands are stimulated to secrete.  相似文献   

9.
H Brew  P T Gray  P Mobbs  D Attwell 《Nature》1986,324(6096):466-468
A major function of glial cells in the central nervous system is to buffer the extracellular potassium concentration, [K+]o. A local rise in [K+]o causes potassium ions to enter glial cells, which have membranes that are highly permeable to K+; potassium then leaves the glial cells at other locations where [K+]o has not risen. We report here the first study of the individual ion channels mediating potassium buffering by glial cells. The patch-clamp technique was employed to record single channel currents in Müller cells, the radial glia of the vertebrate retina. Those cells have 94% of their potassium conductance in an endfoot apposed to the vitreous humour, causing K+ released from active retinal neurones to be buffered preferentially to the vitreous. Recordings from patches of endfoot and cell body membrane show that a single type of inward-rectifying K+ channel mediates potassium buffering at both cell locations. The non-uniform density of K+ conductance is due to a non-uniform distribution of one type of K+ channel, rather than to the cell expressing high conductance channels at the endfoot and low conductance channels elsewhere on the cell.  相似文献   

10.
Single Na+ channel currents observed in cultured rat muscle cells   总被引:28,自引:0,他引:28  
F J Sigworth  E Neher 《Nature》1980,287(5781):447-449
The voltage- and time-dependent conductance of membrane Na+ channels is responsible for the propagation of action potentials in nerve and muscle cells. In voltage-step-clamp experiments on neurone preparations containing 10(4)-10(7) Na+ channels the membrane conductance shows smooth variations in time, but analysis of fluctuations and other eivdence suggest that the underlying single-channel conductance changes are stochastic, rapid transitions between 'closed' and 'open' states as seen in other channel types. We report here the first observations of currents through individual Na+ channels under physiological conditions using an improved version of the extracellular patch-clamp technique on cultured rat muscle cells. Our observations support earlier inferences about channel gating and show a single-channel conductance of approximately 18 pS.  相似文献   

11.
J B Lansman  T J Hallam  T J Rink 《Nature》1987,325(6107):811-813
Endothelial cells line the inner surface of blood vessels and act as the main barrier to the passage of cells and large molecules from the blood stream to the tissues. Recent interest in the part played by the endothelium in regulating vascular tone has focused on the synthesis and secretion of prostacyclin and an endothelium-derived relaxing factor. Endothelial cells respond to blood-borne agonist, but how the endothelium senses and responds to mechanical forces generated by the flow of blood under pressure is not known. Here we report patch-clamp recordings of ion channel activity from cell-attached membrane patches on aortic endothelial cells. In most of the patches examined, we observed unitary inward currents associated with the opening of a cation-selective channel (approximately 40 pS in standard saline). The channel is permeable to Ca2+ and its opening frequency increases when the membrane is stretched by applying suction through the patch electrode. The presence of mechanotransducing ion channels in endothelial cells may help explain how the endothelium mediates vascular responses to haemodynamic stresses.  相似文献   

12.
A E Spruce  A Iwata  J M White  W Almers 《Nature》1989,342(6249):555-558
To enter cells, viruses must fuse their envelope with a host cell membrane. Fusion is mediated by specific, membrane-spanning fusion proteins, of which the influenza virus haemagglutinins (HA) are the best characterized. Several HAs have been sequenced, and the crystal structure of the major part of one HA is known. The conditions for fusion and some of the rearrangements in the HA that accompany fusion are well understood, but it remains unclear how HA causes bilayers to fuse. We have observed, in real time, unitary cell-fusion events caused by HA. Fibroblasts expressing HA were induced to fuse with red blood cells by a rapid drop in pH. Fusion was monitored by fluorescence microscopy, and by measuring the membrane conductance and capacitance of the fibroblast. The earliest event observed was the sudden opening of an aqueous pore connecting the cytoplasms of the fusing cells. Initially, the pore conductance often fluctuated between zero and approximately 600 pS, as if the pore were opening and closing repeatedly. Later, it increased over tens of seconds, as if the pore dilated. We suggest that, as in exocytosis, HA-mediated membrane fusion begins with the formation of a narrow pore. Based on the conductance, we estimate the initial diameter of the pore to be no more than twice that of a gap junction channel.  相似文献   

13.
Y Maruyama  O H Petersen  P Flanagan  G T Pearson 《Nature》1983,305(5931):228-232
Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport. Using patch-clamp methods to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration [( Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10(-8) and 10(-7) M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion.  相似文献   

14.
A novel type of cardiac calcium channel in ventricular cells   总被引:11,自引:0,他引:11  
B Nilius  P Hess  J B Lansman  R W Tsien 《Nature》1985,316(6027):443-446
Calcium influx is vital for several aspects of cardiac activity, so it is important to ask if heart cells possess a single or multiple types of Ca channel. Only one Ca channel type has been identified in patch-clamp studies of unitary current, despite suggestions to the contrary from whole-cell recordings in heart cells and unitary recordings from other cells. Here we describe a novel type of cardiac Ca channel with several properties that distinguish it from the hitherto-identified Ca channel in heart cells. Its conductance in isotonic Ba is small (8 pS), and is no larger in Ba than in Ca. It activates and inactivates at relatively negative potentials and remains functional long after patch excision. It is insensitive to dihydropyridines such as nimodipine and the Ca agonist Bay K 8644, and is more resistant to block by external Cd than the previously described type of cardiac Ca channel.  相似文献   

15.
ATP-sensitive K+ channel in the mitochondrial inner membrane.   总被引:45,自引:0,他引:45  
I Inoue  H Nagase  K Kishi  T Higuti 《Nature》1991,352(6332):244-247
Mitochondria take up and extrude various inorganic and organic ions, as well as larger substances such as proteins. The technique of patch clamping should provide real-time information on such transport and on energy transduction in oxidative phosphorylation. It has been applied to detect microscopic currents from mitochondrial membranes and conductances of ion channels in the 5-1,000 pS range in the outer and inner membranes. These pores are not, however, selective for particular ions. Here we use fused giant mitoplasts prepared from rat liver mitochondria to identify a small conductance channel highly selective for K+ in the inner mitochondrial membrane. This channel can be reversibly inactivated by ATP applied to the matrix side under inside-out patch configuration; it is also inhibited by 4-aminopyridine and by glybenclamide. The slope conductance of the unitary currents measured at negative membrane potentials was 9.7 +/- 1.0 pS (mean +/- s.d., n = 6) when the pipette solution contained 100 mM K+ and the bathing solution 33.3 mM K+. Our results indicate that mitochondria depolarize by generating a K+ conductance when ATP in the matrix is deficient.  相似文献   

16.
Klyachko VA  Jackson MB 《Nature》2002,418(6893):89-92
The vesicles that package neurotransmitters fall into two distinct classes, large dense-core vesicles (LDCVs) and small synaptic vesicles, the coexistence of which is widespread in nerve terminals. High resolution capacitance recording reveals unitary steps proportional to vesicle size. Measurements of capacitance steps during LDCV and secretory granule fusion in endocrine and immune cells have provided important insights into exocytosis; however, extending these measurements to small synaptic vesicles has proven difficult. Here we report single vesicle capacitance steps in posterior pituitary nerve terminals. These nerve terminals contain neuropeptide-laden LDCVs, as well as microvesicles. Microvesicles are similar to synaptic vesicles in size, morphology and molecular composition, but their contents are unknown. Capacitance steps of two characteristic sizes, corresponding with microvesicles and LDCVs, were detected in patches of nerve terminal membrane. Both types of vesicles fuse in response to depolarization-induced Ca(2+) entry. Both undergo a reversible fusion process commonly referred to as 'kiss-and-run', but only rarely. Fusion pores seen during microvesicle kiss-and-run have a conductance of 19 pS, 11 times smaller than LDCV fusion pores. Thus, LDCVs and microvesicles use structurally different intermediates during exocytosis.  相似文献   

17.
M C Sorgato  B U Keller  W Stühmer 《Nature》1987,330(6147):498-500
The prime function of mitochondria is to provide the cell with adenosine triphosphate (ATP). ATP synthesis is driven by the protonmotive force (delta p), which is generated and maintained across the inner mitochondrial membrane (IMM) by the activity of the respiratory chain. It is widely believed that the IMM is unlikely to contain ion channels like those present in the plasma membrane, because the high rates of ion transport characteristic of open channels would be expected to dissipate the delta p. Although the small size of the organelle has prevented the use of classical electrophysiological methods, the recent introduction of the patch-clamp technique, which allows currents to be recorded from very small cells, has enabled us to test this hypothesis. By patch-clamping the IMM, we have identified a slightly anion-selective channel, which is voltage-dependent and has a mean conductance of 107 pS in the presence of symmetrical 150 mM KCl.  相似文献   

18.
在大鼠肾上腺嗜铬细胞上应用全细胞膜片钳和膜电容检测技术,对细胞分泌的模型进行了研究.对Heinemann等提出的准备释放库B,进行了更为精确深入的分析,提出了新的论据和修改内容.证实在距细胞膜 Ca2+通道30nm处存在立即释放库,在距Ca2+通道300nm处存在可释放库.通过内分泌细胞分泌模型分析了Ca2+的控制作用以及囊泡释放过程的时序特征.  相似文献   

19.
Insect olfactory receptors are heteromeric ligand-gated ion channels   总被引:7,自引:0,他引:7  
Sato K  Pellegrino M  Nakagawa T  Nakagawa T  Vosshall LB  Touhara K 《Nature》2008,452(7190):1002-1006
In insects, each olfactory sensory neuron expresses between one and three ligand-binding members of the olfactory receptor (OR) gene family, along with the highly conserved and broadly expressed Or83b co-receptor. The functional insect OR consists of a heteromeric complex of unknown stoichiometry but comprising at least one variable odorant-binding subunit and one constant Or83b family subunit. Insect ORs lack homology to G-protein-coupled chemosensory receptors in vertebrates and possess a distinct seven-transmembrane topology with the amino terminus located intracellularly. Here we provide evidence that heteromeric insect ORs comprise a new class of ligand-activated non-selective cation channels. Heterologous cells expressing silkmoth, fruitfly or mosquito heteromeric OR complexes showed extracellular Ca2+ influx and cation-non-selective ion conductance on stimulation with odorant. Odour-evoked OR currents are independent of known G-protein-coupled second messenger pathways. The fast response kinetics and OR-subunit-dependent K+ ion selectivity of the insect OR complex support the hypothesis that the complex between OR and Or83b itself confers channel activity. Direct evidence for odorant-gated channels was obtained by outside-out patch-clamp recording of Xenopus oocyte and HEK293T cell membranes expressing insect OR complexes. The ligand-gated ion channel formed by an insect OR complex seems to be the basis for a unique strategy that insects have acquired to respond to the olfactory environment.  相似文献   

20.
Ion channels in the nuclear envelope   总被引:9,自引:0,他引:9  
M Mazzanti  L J DeFelice  J Cohn  H Malter 《Nature》1990,343(6260):764-767
Cell nuclei are capable of partitioning a wide variety of molecules from the cytosol, including macromolecules such as proteins and RNA, and smaller peptides, amino acids, sugars and Na+ and K+ ions, all of which can be accumulated in or excluded from the nuclear domain. There are two mechanisms behind this compartmentalization: selective retention of freely diffusible molecules, and selective entry through the nuclear envelope. It is generally accepted that the nuclear envelope restricts only the larger molecules. Here we apply the patch-clamp technique to isolated murine pronuclei and show that the nuclear envelope contains K(+)-selective channels which have multiple conductance states, the maximal conductance being 200 pS. These channels, which contribute to the nuclear membrane potential, may be important in balancing the charge carried by the movement of macromolecules in and out of the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号