首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
生成对抗网络(Generative adversarial networks,GAN)广泛应用于各种领域,尤其在图像生成方面.该模型由生成网络与判别网络2部分组成,在无监督的训练方式下,2个网络相互竞争相互提高.然而,GAN在训练时经常出现模式崩溃问题,进而导致模型收敛较慢,生成样本多样性较差.为解决这一问题,在深度卷积神经网络的基础上提出了一种多生成器生成对抗网络模型.该模型包含多个生成网络,每个生成网络均使用残差网络进行搭建,同时在生成网络间引入协作机制,以加快模型获取信息并减少参数量,最后将各生成网络的特征图进行融合得到最终图像输入到判别网络中.GAN在训练过程中还会出现梯度消失、训练不稳定问题.为避免出现这些问题,将Wasserstein距离和梯度惩罚引入模型的损失函数.通过在多个数据集上与多种相关方法进行实验比较,结果表明提出的模型在缓解模式崩溃问题、加快模型收敛速度以及减少参数量上均明显优于其他几种方法.  相似文献   

2.
在计算机机械学习领域,相对于数字和英文字母,手写汉字的自动生成研究是个重点难点问题,且具有重要研究意义。随着深度学习的不断发展,生成对抗网络在图像生成领域取得了很大进展。本文提出了一种基于循环生成对抗网络(Cycle Generative Adversarial Networks, CycleGAN)的无监督手写汉字生成方法。利用标准仿宋字体图像和手写字体图像进行训练,生成的手写汉字图像具有比较高的识别度。  相似文献   

3.
基于随机生成树的配电网重构模拟退火算法   总被引:8,自引:0,他引:8  
提出了一种基于实数编码方式的配电网重构模拟退火算法,即按开关序号的实数编码方式产生随机序列,再利用图论方法产生对应的一棵生成树(一种树状网络结构).该算法可保证解空间的可行性和完备性.对算法的邻域结构的确定进行了分析.给出的算例表明该算法求解快速,简单有效。  相似文献   

4.
针对多聚焦图像融合中权重分配和融合规则设计困难的问题,本文提出了一种基于改进生成对抗网络的多聚焦图像融合算法。首先,对生成器网络和判别器网络进行设计,为了避免图像在网络模型传递过程中造成的信息丢失,裁撤网络结构中的池化层,通过卷积层叠提取图像特征。其次,构建生成对抗网络的损失函数,优化网络参数,得到最佳的网络模型。最后,将实验结果与现有的几种融合算法相比较,通过5种客观评价指标来评价融合图像的效果。结果表明,本文提出的算法不仅在主观上有着良好的视觉效果,也在客观评价指标上有显著优势。  相似文献   

5.
针对基于深度学习的分类器面对对抗样本时缺乏稳定性的问题,基于生成对抗网络(GAN)提出了一种新的模型,用于生成对抗样本。该模型首次实现了直接以恶意网络流为原始样本的对抗样本生成,并首次提出了弱相关位的概念,用于保证恶意网络流对抗样本的可执行性和攻击性。利用该模型生成的对抗样本能够有效地欺骗基于深度学习的网络安全检测器,且通过实验验证了该对抗样本具有实际攻击效果。  相似文献   

6.
为解决现有字体模型不完善的笔画连接、不正确的拓扑结构、字形模糊等伪影问题,提出了一种基于改进条件生成对抗网络的汉字字体生成算法.本算法将字体生成任务视为图像转换问题,提出FontToFont和MSAFont两种自动字体生成方法.针对现有汉字字体生成模型存在的问题,提出了基于改进条件生成对抗网络的汉字字体生成算法FontToFont,通过引入U-Net网络结构,可以使生成器保存更详细的信息,并有利于模型性能.建立一种基于多种风格汉字字体的数据集,定性定量验证模型的性能.提出的这种基于改进条件生成对抗网络的汉字字体生成算法,能够从多风格汉字字体中的一部分字体生成高质量的一整套汉字字体.通过设计师的评价及模型消融实验,生成字体的视觉质量和完整度效果良好.  相似文献   

7.
针对循环一致性生成对抗网络(Cycle-GAN)在图像风格转换任务上出现的纹理细节处理得不好、背景颜色保留较差等问题,并且缩小在配对图像数据集和非配对图像数据集上训练结果的差异,提出一种基于注意力机制的循环一致性生成对抗网络,在生成器网络中融入通道注意力机制(SE-Net),利用网络自主学习的方法得到每一个特征通道的重要程度,再分别赋予每个特征通道不一样的权重系数,以此来强调有重要特征的部分、抑制非重要特征的部分,使得不同特征和不同区域能够被生成器网络非均匀的处理。同时引入对比学习(CL),使网络能够学习到图像的更高层次的通用特征。实验结果表明,所提方法在horse2zebra数据集上取得了较好的结果。  相似文献   

8.
提出了一种基于生成对抗网络的细胞形变动态分类方法,以活细胞视频中的细胞形变动态为对象,引入分类器辅助的生成对抗网络结构同步训练生成对抗网络和分类网络,通过生成对抗网络产生的数据提高了原本分类网络分辨细胞形变动态的性能.首先,细胞动态图像被用于将活细胞视频中的时间维度进行压缩,使其从视频域映射到图像域以方便生成对抗网络的构建.其次,基于分类器辅助的生成对抗网络结构,将分类网络的分类信息作为辅助信息来改善生成对抗网络对多类样本的生成,同时生成网络生成的多类样本可以反过来优化分类网络对于细胞动态形变的分类性能.在构建的活细胞视频数据库上,可以验证提出方法能有效地捕获细胞视频中的空时细胞形变动态,并且其分类的性能优于其它主流方法.  相似文献   

9.
基于神经网络的图像超分辨率方法往往存在重建图像纹理结构模糊、缺失高频信息的问题。为了解决该问题,在SRGAN的基础上提出一种多尺度并联学习的生成对抗网络结构,其中生成模型由两个不同尺度的残差网络块组成,首先对提取的低分辨率图像通过两个子网络的多尺度特征学习,然后使用融合网络进行残差融合,融合不同尺度高频信息,最终生成高分辨图像。在Set5、Set14、BSD100基准数据集以及SpaceNet卫星图像数据集上的实验结果证明了该算法在恢复低分辨率图像的细节纹理信息具有良好效果。  相似文献   

10.
类别文本生成旨在让机器生成人类可理解的文本,并且赋予生成文本特定的类别属性。现有工作主要采用基于生成对抗网络的文本生成框架,往往直接采用卷积神经网络进行文本特征提取,缺乏对文本全局语义的关注;此外,简单地在生成网络中引入注意力无法有效消除解码过程中的噪声。针对上述问题,本文提出一种将文本全局特征与局部特征联合建模的方法,通过将长短时记忆网络提取的全局语义信息与卷积神经网络提取的局部语义信息进行融合,增强生成过程中对文本全局语义信息的关注,并且引入双重注意力,进一步过滤掉序列生成中的无关信息。与基准模型相比,本文提出的方法分别在2个公开的真实数据集(Movie Review和Amazon Review)上取得了至少0.01和0.004的BLEU值的提升,表明了本文方法的有效性。  相似文献   

11.
提出了一种新的基于生成对抗网络的人脸图像彩色化方法.所提出的网络结构包含两组生成对抗子网络,每个子网络由一个生成器和判别器组成.其中,一个对抗子网络A(包含生成器A和判别器A)实现从灰度图像到彩色图像的翻译过程,另一个子网络B(包含生成器B和判别器B)反转该过程,即生成器B对称地使用生成器A的最终输出图像作为输入,用来重建原始的人脸灰度图像.其中,网络中的循环损失进行图像重建,而生成损失和对抗损失用来保证生成的图像更加接近真实图像.实验结果表明,这种结构设计不仅能实现自然逼真的人脸图像彩色化,还能同时保证人脸的身份属性不变.   相似文献   

12.
生成式对抗网络(GAN)是一种优秀的生成式模型,能够不依赖任何先验假设,学习到高维复杂的数据分布。这一强大的性能使得它成为近年来研究的热点,并在诸多应用领域取得了显著的研究成果。首先介绍了生成式对抗网络的基本原理,各种目标函数以及常用的模型结构。然后,详细分析了生成式对抗网络在条件限制下生成图片的各种演进方法。此外,介绍了生成式对抗网络在不同领域的应用,包括高分辨率图像生成、小目标检测、非图像数据生成、医学图像分割等方面的最新研究进展。最后,总结了生成式对抗网络训练过程中的优化技巧。旨在通俗地阐明GAN的基础理论以及发展历程,并从应用角度对未来工作进行了展望。  相似文献   

13.
如何更好地对受损的面部图像实施相应的修复,根据此问题指出了一类基于生成对抗网络改良以后的面部修复算法.首先,在生成模型中把编码器和解码器的中间层的全连接换成逐信道全连接,在编码和解码阶段使用卷积操作代替池化操作,针对损失函数采用的激活函数进行改进,增加tanh函数,提高图像补全效果.然后,在保证功能上不受损并且输入、输出尺寸保持原状的条件下对判别器的模型进行了相应的改良,最后,对损失函数引进TV损失、重建损失这二者来实现对生成网络的优化处理,由此提升细节图像方面的修复实力.通过实验表明,使用该方法修复后的面部图像,比先前的方法更清晰更连贯.  相似文献   

14.
针对风格多样的中文字体设计和复杂操作的问题,提出一种生成式对抗网络的汉字风格迁移和字库设计方法。将宋体与黑体作为测试数据集,将瑞虎宋体作为目标数据集,通过生成式对抗网络对抗训练方法,使宋体与黑体字风格转换为瑞虎宋体风格。通过实验生成的字体图像轮廓更加平滑和美观,表明本文提出的方法能够显著提高对字形设计的工作效率。  相似文献   

15.
针对入侵检测系统因采用的网络攻击样本具有不平衡性而导致检测结果出现较大偏差的问题,文章提出一种将改进后的深度卷积生成对抗网络(DCGAN)与深度神经网络(DNN)相结合的入侵检测模型(DCGAN-DNN),深度卷积生成对抗网络能够通过学习已知攻击样本数据的内在特征分布生成新的攻击样本,并对深度卷积生成对抗网络中生成网络所用的线性整流(ReLU)激活函数作出改进,改善了均值偏移和神经元坏死的问题,提升了训练稳定性。使用CIC-IDS-2017数据集作为实验样本对模型进行评估,与传统的过采样方法相比DCGAN-DNN入侵检测模型对于未知攻击和少数攻击类型具有较高检测率。  相似文献   

16.
针对当前卷积神经网络未能充分利用浅层特征信息, 并难以捕获各特征通道间的依赖关系、 丢失高频信息的问题, 提出一种新的生成对抗网络用于图像超分辨率重建. 首先, 在生成器中引入WDSR-B残差块充分提取浅层特征信息; 其次, 将GCNet模块和像素注意力机制相结合加入到生成器和鉴别器中, 学习各特征通道的重要程度和高频信息; 最后, 采用谱归一化代替不利于图像超分辨率的批规范化, 减少计算开销, 稳定训练. 实验结果表明, 该算法与其他经典算法相比能有效提高浅层特征信息的利用率, 较好地重建出图像的细节信息和几何特征, 提高超分辨率图像的质量.  相似文献   

17.
针对正常和异常声音可能具有较大的相似性, 有时无法利用自编码器重构误差大小区分的问题, 提出一种生成对抗单分类网络方法进行异常声音检测, 通过多次训练, 该方法学习正常样本的分布特征. 在测试过程中, 测试正常样本能以极小的误差进行重构, 而异常样本重构效果较差, 在某些频率段会发生畸变, 从而给出判别分类结果. 实验采用UrbanSound8K公开数据集和实测电机声音数据集进行了测试, 获得该方法的准确率分别为86.3%和98.1%, 比卷积自动编码器等主要深度学习方法分别提高了5.0%和3.0%.  相似文献   

18.
海马子区体积很小且结构复杂,传统分割方法无法达到理想分割效果,为此引入生成对抗网络模型用于海马子区图像分割.该方法构建一个生成对抗网络模型,通过构建生成网络和对抗网络并对其进行交替对抗训练实现对脑部海马子区图像的像素级精确分割.实验选取美国旧金山CIND中心的32位实验者的脑部MRI图像进行海马子区分割测试,在定性和定量方面分别对比了所提方法基于稀疏表示与字典学习方法和传统CNN的分割结果.实验结果表明,该方法优于基于稀疏表示与字典学习和CNN方法,海马子区分割准确率有较大提升.该方法提升了海马子区的分割准确率,可用于大脑核磁图像中海马子区的分割,为诸多神经退行性疾病的临床诊断与治疗提供依据.  相似文献   

19.
页岩油气藏孔隙结构复杂,岩芯获取困难,准确表征页岩储层孔隙结构是研究页岩储层内流体渗流规律的关键。基于真实页岩岩芯的三维聚焦离子束扫描图像,对原始生成对抗网络模型的结构重新设计,同时,为了保证重建结果可以充分反映页岩岩芯的孔隙结构信息,增大了训练样本的尺寸,以此训练生成模型,进而生成页岩三维数字岩芯,对比分析了重建数字岩芯和原始岩芯的孔隙度,并基于重建数字岩芯提取了孔隙网络模型,分析了页岩孔隙结构性质。结果显示,重建岩芯的孔隙度、孔隙空间结构、连通性以及孔隙喉道的配位关系与原始岩芯具有很高的一致性,由此验证了生成模型可以实现三维页岩数字岩芯的构建。最后,构建了多个页岩数字岩芯,计算了多个孔隙结构参数的均值及变化区间,证明了生成的数字岩芯具有稳定的孔隙空间特征,训练好的生成模型具有良好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号