首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
结合飞行员操作过程中手部的运动特点,针对核相关滤波器跟踪算法在目标尺度变化和快速移动时存在的问题,提出了一种结合了手势检测与核相关滤波跟踪算法的飞行员手势跟踪方法。首先,将肤色分割与背景减除进行有效的融合,对静态手势进行快速检测。然后,使用KCF算法对定位的手势区域进行跟踪,以获取手势实时位置和轨迹。跟踪过程中比较手势检测与手势识别所得到的手部信息,当出现偏差时对搜索框进行更新,从而实现有效的手势检测与跟踪。实验结果表明,该方法可以实现对飞行员变形手势快速、准确地实时跟踪,对部分遮挡和尺度变化有很好的适应性,能够满足后期飞行员手部行为分析的要求。  相似文献   

2.
针对手势视频序列中由于手势快速运动导致跟踪失败的问题,提出一种基于mean shift的线性预测方法以实现图像序列中手势实时跟踪.该方法通过提取手势肤色HSV空间中的H分量建立目标模型对运动手势进行跟踪,并针对手势快速运动的情况利用线性预测方法对下一帧中手势的起始中心进行预测,同时更新手势的目标模型以适应光照等环境的变化.实验结果表明:在手势快速运动时该方法可对目标起始中心进行有效预测,提高手势跟踪的精确度.  相似文献   

3.
为了实现对手势目标的自动识别和连续跟踪,提出了一种手势识别与跟踪算法。首先,通过离线训练手势目标检测器来实现手势目标的自动识别。接着,通过改进的Shi-Tomisi算法,在目标区域提取可靠稳定的特征点。然后,通过KLT跟踪器对特征点进行跟踪。当特征点跟踪成功时,通过求解仿射变换矩阵确定手势目标的新位置;当目标出现遮挡和大尺度旋转时,特征点丢失,此时在KLT跟踪器中加入卡尔曼滤波器来预测手势目标的位置,实现对手势目标的连续跟踪。同时对手势目标可能存在的区域进行估计,缩小检测器的检测范围,提高检测速度。最后,将算法应用于人机交互系统中,实现了机器人的远程控制。实验结果显示,算法在简单背景下的跟踪正确率为99.54%,复杂背景下的跟踪正确率为98.24%。实验结果表明,算法能够快速准确地对手势目标进行检测和跟踪,满足了实时性、连续性以及抗干扰能力强等要求,对于旋转及遮挡均具有较强的鲁棒性,为实现基于手势控制的人机交互提供了一种有效方法。  相似文献   

4.
基于手势特征和回归算法,通过改进传统的3D手势级联回归算法学习效率低的缺陷,提出一种新的基于手势变化特征的手部结构特征算子,有效减少了手部特征算子的维度,并对传统级联回归器进行了适应于手势变化的结构改进,使其针对手部结构的识别效率显著提高.在公开数据库及自建数据库分别进行实验,实验结果表明,该算法在保持手势识别准确度的同时,能有效提高执行效率.  相似文献   

5.
有效和鲁棒的手势跟踪是动态手势识别的前提,针对手势及其运动的特点,提出了结合Kalman滤波器和肤色模型的手势运动目标跟踪方法.首先通过背景差法和YCb’Cr’空间上的椭圆肤色模型检测出手部运动目标,通过目标区域的空间结构参数来设置Kalman滤波器的各项运动参数,然后计算空间结构特征的跟踪匹配函数对目标预测位置进行修正,获得运动手势目标区域及其运动轨迹.实验结果表明,所提方法能有效地跟踪手势,并能较好地适应手势在运动过程中的手形变化、轨迹转弯等情况,检测准确,鲁棒性高.  相似文献   

6.
为克服传统二维彩色图像处理算法易受周围环境、光照变化、背景等因素的影响,提出利用Kinect深度图像信息,实现一种快速鲁棒的手势分割与指尖检测算法。首先,根据Kinect得到的深度信息对非人体部分图像进行筛选,得到包含人手的人体图像;然后对当前得到的人体图像进行直方图分析,计算能够区分人手与非人手的阈值,并通过该阈值对人体图像进行分割得到人手图像;最后,对人手图像进行形态学处理,计算掌心位置,并提取手部轮廓,结合人手轮廓关键几何特征对指尖进行有效检测。实验表明,该方法能够实时、有效地对指尖进行检测。  相似文献   

7.
多尺度模型与矩描绘子相结合的手势识别算法   总被引:1,自引:0,他引:1  
提出了一种基于单目视觉的手势识别算法.通过用户初始化过程获取基本识别参数,结合视频跟踪的过程实时获取用户手势区域,在该区域内采用矩描绘子与多尺度模型相结合的方法进行特征提取,对于提取出的特征采用分类识别规则,实现对手势1~10的正确识别.经过试验证明,该算法可以适用于不同用户,识别正确率达到93.5%.  相似文献   

8.
为实现基于手势的智能人机交互,提出了一种基于视觉的人手跟踪与手势识别算法.该方法以ICON—DENSATION算法为基础,融合颜色与深度信息进行重要采样,结合轮廓信息并通过ASM模型的能量函数进行观测,根据最大后验概率对几种预定义的手势进行识别.实验结果表明,该算法能够有效地实现复杂背景下的人手跟踪与手势识别,为进一步实现智能人机交互奠定了基础.  相似文献   

9.
为实现基于手势的智能人机交互,提出了一种基于视觉的人手跟踪与手势识别算法.该方法以ICONDENSATION算法为基础,融合颜色与深度信息进行重要采样,结合轮廓信息并通过ASM模型的能量函数进行观测,根据最大后验概率对几种预定义的手势进行识别.实验结果表明,该算法能够有效地实现复杂背景下的人手跟踪与手势识别,为进一步实现智能人机交互奠定了基础.  相似文献   

10.
为了解决传统基于核相关滤波器(KCF)的跟踪算法难以有效处理目标尺度变化的难题,本文提出了一种新的融合快速准确估计目标尺度变化的核相关滤波跟踪算法。该方法首先利用目标尺度变化的连续性对目标的尺寸变化进行粗略估计,得到目标尺度变化的粗略值;然后进一步对目标尺度的更多可能变化进行精确搜索,提升目标尺度估计的准确性。在公开的复杂场景视频进行测试,比较了本文方法和原始KCF算法的实验效果,并且将本文算法和经典跟踪算法进行了比较,实验结果表明本文提出的目标跟踪算法更准确鲁棒。  相似文献   

11.
基于穿戴视觉的人手跟踪与手势识别方法   总被引:1,自引:0,他引:1  
为了解决人与穿戴计算机的自然交互问题,提出了一种基于穿戴视觉的人手跟踪与手势识别方法.该方法以Icondensation算法为基础,综合利用穿戴视觉系统输出的深度和灰度信息进行人手跟踪,并引入了手势变换模型.该模型可以在几种预先定义的手势之间进行动态变换.实验结果表明,该方法可以有效地实现动态和复杂背景下的人手跟踪与手势识别,为穿戴计算机系统提供自然友好的手势交互途径.  相似文献   

12.
在基于机器视觉的手势识别研究中,手势分割与定位是关键技术。本文在分析肤色的颜色特征和人手运动特性的基础上,提出了一种在视频图像序列中实现手势分割和定位的算法。首先结合肤色检测技术和基于高斯混合模型的运动目标检测技术,获得了图像序列的初始手势区域,之后利用Blob技术实现了最终手势的分割和定位。实验结果显示,该方法具有较高的分割和定位准确度。  相似文献   

13.
提出了一种新的基于Kinect的实时静态手势识别方法,主要贡献包括:提出了一种简易可行的、结合图像深度信息与肤色信息的手势区域检测与分割方法;提出了一种改进的凸分解算法,对手势区域进行近似凸形状分解,以得到表征手势特征的骨架信息;采用基于路径相似性的骨架图匹配算法对手势进行匹配以实现识别.针对特定手势集进行了对比实验,实验结果表明,本文方法在识别结果的准确率以及算法的效率上都有着良好的表现.   相似文献   

14.
针对任意变形手势跟踪过程中,手势运动轨迹方向发生改变时,传统滤波跟踪算法跟踪精度迅速下降的问题,提出了一种基于交互式多模型Kalman滤波的改进型手势跟踪算法。该算法在传统非机动状态空间模型的基础上增添了两个机动模型,以更加准确的描述手势的状态空间。首先采用三个不同模型分别描述不同的目标运行模式;同时,以模型匹配似然函数为基础更新模型概率;最终组合所有滤波器修正后的状态估计值以得到最优状态估计。实验对比结果表明,该算法能够取得较高地跟踪精度。  相似文献   

15.
针对复杂环境中存在的手势识别问题,提出一种利用Kinect传感器获取深度信息并进行动态手势识别的方法。该方法通过对Kinect传感器获取的深度信息进行分析,获取人体主要骨骼点的3D坐标,从中选取六个点作为手部运动的特征参照;为提高手势识别系统的识别速度,提出了一种基于查表的DTW算法对得到的特征数据进行模板训练并实现动态手势识别。实验结果表明:该方法具有较高的识别速度和识别率,对复杂背景及光照强度变化具有较强的鲁棒性。  相似文献   

16.
为了解决YOLOv3算法在手势识别中存在识别精度低及易受光照条件影响的问题,提出了一种改进的YOLOv3手势识别算法。首先,在原来3个检测尺度上新增加1个更小的检测尺度,提高对小目标的检测能力;其次,以DIoU代替原来的均方差损失函数作为坐标误差损失函数,用改进后的Focal损失函数作为边界框置信度损失函数,目标分类损失函数以交叉熵作为损失函数。结果表明,将改进的YOLOv3手势识别算法用于手势检测中,mAP指标达到90.38%,较改进前提升了6.62%,FPS也提升了近2倍。采用改进的YOLOv3方法训练得到的新模型,识别手势精度更高,检测速度更快,整体识别效率大幅提升,平衡了简单样本和困难样本的损失权重,有效提高了模型的训练质量和泛化能力。  相似文献   

17.
为了获得简单、高效的数字手势识别方法,增加使用者舒适的体验,提出一种基于Kinect融合深度信息和骨骼信息的数字手势识别方案.首先,使用Kinect进行深度数据的采集,建立深度图像;其次,结合骨骼追踪系统,提取人体轮廓,运用深度阈值法从轮廓中分割出手部区域,并进行二维图像的重建;再次,利用手腕和手掌骨骼点准确分割出手掌区域,并运用图像形态学开运算进行处理,得到不含手指的图像,进而提取掌心坐标;最后,计算半径,确定掌心圆,采用圆的边界和手指相交次数的方式识别手指个数.实验结果表明:数字手势识别方案能够准确、高效地识别数字手势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号