共查询到19条相似文献,搜索用时 62 毫秒
1.
步长的选取对于布谷鸟搜索算法的收敛速度与运算结果的精度起着关键作用。提出了一种基于逐维改进的自适应步长布谷鸟搜索算法。首先,在原始自适应步长布谷鸟搜索算法中,当上一代鸟窝位置为最优位置时,步长不再更新,则简单修正原有的步长让其更新;其次,将逐维更新评价策略引入修正后的自适应步长布谷鸟搜索算法。实验结果表明,该算法不仅平衡了全局寻优能力和寻优精度之间的矛盾而且具有较好的收敛速度。 相似文献
2.
求解连续函数优化的自适应布谷鸟搜索算法 总被引:2,自引:0,他引:2
为了提高布谷鸟搜索算法求解连续函数优化问题的性能,提出一种自适应布谷鸟搜索算法,改进算法利用解与当前最优解之间对应维上距离,实现随机游动步长的自适应调整。距离当前最优解对应维越远,维的随机游动步长越长,反之越短。利用解的适应度与群体平均适应度的关系自适应调整发现概率,使劣质解比优秀解更容易被淘汰。将自适应布谷鸟算法应用于8个典型测试函数,实验结果表明,改进算法有效改善求解连续函数优化问题的性能,尤其适合求解高维、多峰的复杂函数。与相关的布谷鸟搜索算法比较,自适应布谷鸟搜索算法更具竞争力。 相似文献
3.
动态遮阴下,光伏阵列的输出P-U曲线会出现多个功率极值点,传统最大功率点追踪会陷入局部最优。为此,本文提出基于自适应差分进化的改进布谷鸟(ICS)算法与电导增量法(INC)相结合的复合算法(ICS-INC)。该算法提出自适应抛弃概率和自适应步长因子,结合差分变异进行随机偏好游走,使算法的搜索开发能力得到提升,避免陷入局部最优。通过改进Lévy飞行公式减小其随机性,减小算法的迭代次数来缩短跟踪时间,由INC实现局部快速搜索,稳定输出最大功率。仿真结果表明,与其他算法相比,该算法的追踪速度,全局搜索性以及环境变化的适应能力均得到提升。 相似文献
4.
布谷鸟搜索算法是一种解决函数目标优化问题的全局搜索算法,具有选用参数少、容易实现、搜索路径优、寻优能力强等特点。为了提高布谷鸟搜索算法的求精能力和收敛速度,改善后期收敛慢和搜索精度不稳定的问题,提出了一种基于小批量梯度下降的布谷鸟搜索算法。引入小批量梯度下降,优化寻找最优解的过程,加快局部最优的搜索,从而提高算法的求精能力和收敛速度。仿真实验结果表明,基于小批量梯度下降的布谷鸟搜索算法简单高效,在保持标准布谷鸟搜索算法优点的基础上提高了算法的收敛速度和寻优精度,具有较强的稳定性和鲁棒性。 相似文献
5.
为了使树木更好地适应外界环境的变化,林木育种的关键是确保其具有较高的遗传多样性.通过优化种子园的空间布局,可以提高树木的遗传多样性.但随着种子园规模的扩大,空间布局优化方案的复杂度会呈指数级增长,使用传统方法很难在可行的时间内得到最优解.采用改进的布谷鸟搜索算法对种子园配置方案进行最优化设计,并利用不同规模种子园的模拟数据验证该算法在解的质量和求解速度方面的可靠性,且对于相同数据,该算法优于遗传算法,可高效地输出一个优化的栽培种植方案,为种子园的建立提供决策依据. 相似文献
6.
针对现有图像分割算法中计算复杂度大的问题,提出一种基于自适应布谷鸟(adaptive cuckoo search,ACS)算法的Tsallis熵阈值图像分割方法,能够改善学习过程和收敛速度,减少分割时间.该方法使用Tsallis熵作为ACS的适应度函数值,实现无参数搜索过程,在搜索空间中使用当前位置的知识来自适应步长,最后使用ACS最大化Tsallis熵来获得最优阈值,得到分割图像.实验结果表明,该文方法能够有效实现图像分割,且分割时间低于粒子群优化算法、布谷鸟搜索算法和改进布谷鸟搜索算法,结构相似性(Structural Similarity, SSIM)和收敛成功率高于其他算法. 相似文献
7.
工程结构经常受到动荷载的作用,对结构产生不利的影响。为了准确有效地获取结构承载状态,提出了基于Newmark-β法的布谷鸟搜索算法识别动载荷。该算法将时间离散成若干个时间步,采用Newmark-β法对离散后系统的运动方程求解,得到动载荷作用下的结构响应;然后将动载荷响应作为优化变量,以计算响应和测量响应之间的差异为目标函数,利用布谷鸟搜索算法最小化目标函数,实现动载荷的反演。为了验证算法的准确性和有效性,以受动态载荷作用的简支桥梁为例进行反演,分别讨论了鸟巢数量、测点位置、测点数量以及测量噪声对反演结果的影响。数值算例表明,该方法可准确有效地反演动载荷。 相似文献
8.
可重构智能表面(RIS)是6G关键技术之一,可灵活部署在基站服务区域的内部,辅助基站定位,提高定位精度.针对RIS辅助毫米波多输入单输出无线定位系统,利用布谷鸟搜索算法(CS)求解极大似然位置估计函数.为了提高算法寻优能力,将CS算法的发现概率和搜索路径步长由固定值改为自适应变化的动态参数.实验结果表明,引入RIS辅助定位可以明显提高定位精度,自适应布谷鸟搜索算法(ACS)寻优能力高于布谷鸟搜索算法. 相似文献
9.
为解决最大似然DOA(Direction of Arrival)估计多维非线性搜索计算量大的问题, 将布谷鸟搜索算法与最大似然算法相结合, 利用布谷鸟搜索算法优化多维非线性的最大似然DOA估计谱函数。在保留布谷鸟搜索算法的主体思想的同时, 改进了算法的位置迭代方式, 加快了收敛速度。仿真结果表明, 改进的布谷鸟搜索算法在DOA估计中具有较好的收敛性, 估计性能较好。 相似文献
10.
针对单核极限学习机在泛化性能上存在一定局限性的问题, 提出将再生核函数与多项式核函数相结合, 建立一种新的组合核极限学习机模型, 使其具有全局核与局部核的优点, 并选择布谷鸟搜索算法对其参数进行优化选择. 仿真实验结果表明, 采用基于再生核的组合核函数作为极限学习机的核函数可行, 在实验数据集的多值分类和回归问题上, 与传统支持向量机及单核极限学习机相比, 该模型具有更好的泛化性能. 相似文献
11.
基于布谷鸟搜索算法的SVR参数选择 总被引:1,自引:0,他引:1
SVR(支持向量回归机)在解决非线性回归问题时有极大的优势,在其预测过程中,最重要的是参数的选择,不同的参数会造成预测结果的巨大差异.目前较为普遍的方法是利用遗传算法和粒子群算法进行参数选择,而这2种算法在解决多峰问题时的局限性,容易导致算法的效率低且准确度不高.鉴于布谷鸟搜索算法引入了Lvy飞行机制,能有效地跳出局部最优解,使算法收敛速度快,且结果具有对算法本身的参数变化不敏感的优点,该文将布谷鸟搜索算法应用于SVR参数寻优过程中.网络流量和白葡萄酒质量的预测实验结果表明,布谷鸟搜索算法相对于遗传算法、粒子群算法等其他启发式智能算法而言,收敛速度更快,寻参结果的精度更高. 相似文献
12.
李会荣 《海南大学学报(自然科学版)》2013,31(2):143-148
针对标准的差分进化(DE)算法在高维复杂的函数优化中易早熟收敛,进而导致搜索精度低甚至优化失败的问题,提出一种基于单纯形局部搜索的自适应的差分进化算法(SSADE).将DE算法的快速全局搜索能力与单纯形的强局部寻优能力有机结合起来,进一步提高了解的精度.参数自适应变化有效地维持了种群的多样性,自适应的变异策略扩大了个体的搜索范围,增强了算法寻优效果,仿真实验验证了新混合算法的有效性. 相似文献
13.
郑亚强 《聊城大学学报(自然科学版)》2014,(1):102-106
提出了一种新的盲均衡算法—基于布谷鸟搜索算法优化的小波多模盲均衡算法(CSWT-MMA),该算法利用正交小波变换(WT)降低信号的信噪比,并将具有卓越的全局搜索能力的布谷鸟搜索(CS)算法引入多模盲均衡算法(MMA).水声仿真结果表明,新算法能较好地捕获全局最优解,有效改善了MMA容易陷入局部最小值、收敛速度慢、稳态误差大等问题,具有更快的收敛速度和更小的均方误差,均衡质量更高. 相似文献
14.
针对单核极限学习机在泛化性能上存在一定局限性的问题, 提出将再生核函数与多项式核函数相结合, 建立一种新的组合核极限学习机模型, 使其具有全局核与局部核的优点, 并选择布谷鸟搜索算法对其参数进行优化选择. 仿真实验结果表明, 采用基于再生核的组合核函数作为极限学习机的核函数可行, 在实验数据集的多值分类和回归问题上, 与传统支持向量机及单核极限学习机相比, 该模型具有更好的泛化性能. 相似文献
15.
为了提高布谷鸟搜索算法在求解复杂优化问题时的收敛速度和搜索精度,基于交叉熵方法,构建了一种新的布谷鸟-交叉熵混合优化算法.该算法将基于模型的交叉熵随机优化算法和基于种群的布谷鸟搜索进行有机融合,采用协同演化策略,既提升了混合算法收敛速度,又改善了其全局优化能力.对经典测试函数和PID控制器整定问题的仿真结果表明,新算法具有全局搜索能力强、求解精度高和鲁棒性好等特性,是一种求解复杂优化问题的可行和有效算法. 相似文献
16.
为提高布谷鸟搜索算法的收敛速度和求精能力,在研究现代智能算法和启发式方法的基础上,提出协同进化布谷鸟搜索算法.分析Lévy Flight飞行搜索机制,将传统布谷鸟算法与粒子群算法相结合,提出基于粒子群算法的协同进化布谷鸟搜索算法.通过对典型非线性测试函数进行仿真测试,分析实验数据和收敛曲线,验证该算法的有效性和可行性. 相似文献
17.
在布谷鸟搜索算法的基础上,提出了一种基于升序排列的离散布谷鸟搜索算法(DCS),使用该算法求解Job-shop的经典LA问题.仿真数据显示,该算法在收敛速度、精度和稳定性方面都明显优于粒子群优化算法和萤火虫优化算法,显示出DCS算法的可行性和有效性. 相似文献
18.
一种基于降采样的块匹配三步搜索改进算法 总被引:2,自引:0,他引:2
在视频图像处理中,运动估计对于提高视频信号去隔行和降噪的效果具有举足轻重的作用,是整个运动补偿视频图像处理算法的关键部分.在视频处理芯片的硬件实现中,运动估计的性能和算法复杂度直接决定了芯片的速度、面积和功耗;同时,运动估计在视频图像编码中也同样决定了整个编码算法的效率.在新三步算法的基础上权衡运动估计算法的性能和运算复杂度,提出了一种块内降采样的搜索算法(down-sampled diamond NTSS,DSD-NTSS).该算法利用图像的局部相似性特征,对搜索块的内部像素采用交叉采样方式做块匹配的运算以降低算法复杂度.仿真结果表明,在保证了同等的图像处理质量的情况下,该算法与新三步法相比运算量降低了一半左右;而与全搜索、菱形搜索、三步搜索等其他快速算法相比,该算法在性能和算法复杂度上的综合表现更为优秀. 相似文献
19.
为了求解间歇反应动态优化问题,提出了一种自适应差分进化算法(Self-Adaptive Differential Evolution,SADE)。在SADE算法中,每个个体都拥有自己的控制参数。该算法在对原优化问题进行差分进化搜优的同时,以权重大小来评价各个控制参数的优劣,并以加权控制参数作为控制参数的进化方向,实现其自适应调整。结果表明SADE算法收敛速度快、求解精度高。将SADE算法应用于两个典型的间歇反应动态优化问题中,取得了较好的优化效果;同时,分析了时间离散度对优化结果的影响。 相似文献