共查询到19条相似文献,搜索用时 62 毫秒
1.
考虑到常规的高光谱影像稀疏表达分类模型的不足,提出随机矩阵-非负稀疏表达分类模型来提高高光谱影像的分类精度.通过引入随机矩阵来改善传统稀疏表达分类模型中测量矩阵以更好满足限制等距特性条件,同时限定系数向量的非负性以提高重构系数的可解释性.基于两个不同的高光谱数据集,对随机矩阵-非负稀疏表达分类模型采用三种方法进行系数重构,并对比常规稀疏表达分类模型的分类结果.实验证明,所提的模型能够明显提高常规稀疏表达分类模型的分类结果.同时,随机矩阵的投影维数对分类精度的影响研究实验表明,较大的投影维数能够保证该模型用以提高高光谱影像的分类精度. 相似文献
2.
遗传关联向量机高光谱影像分类 总被引:1,自引:0,他引:1
基于高光谱影像临近波段相关性高, 直接在高维空间分类并非最优,并且使用交叉验证进行分类器参数寻优过程繁琐,提出了遗传关联向量机(GA RVM)高光谱影像分类算法,使用遗传算法搜索面向关联向量机(RVM)的最优参数和特征子空间, 消除冗余信息, 简化参数优化过程.实验环节验证了GA RVM算法的有效性,剔除约50%冗余波段后,总体分类精度提高3%, 对难分地物改进尤为明显, 其中混分最严重的2种大豆精度提高了8%. 相似文献
3.
《华中科技大学学报(自然科学版)》2017,(12)
针对高光谱图像压缩算法存在的解码端计算复杂度高,且没有充分考虑高光谱图像结构特征信息等问题,提出了一种基于块稀疏表达模式的高光谱图像压缩方法.主要通过在编码端利用结构字典对稀疏系数进行结构化压缩编码,避免解码端非线性重构,以达到缩短高光谱图像重构时间的目的.实验证明该方法在压缩比较低(0.015 9)时依然能获得较高的重构精度(峰值信噪比为22.240 3,结构相似度为0.511 4). 相似文献
4.
为了从高光谱遥感影像中高精度提取各种线形道路,提出了基于支持向量机(SVM)的道路特征快速提取算法,首先利用PCA对高光谱影像进行合理压缩,由SVM模式识别理论推导出该算法具有快速精确提取道路网信息的能力,针对高光谱遥感影像高信息量和道路网复杂度高的特点,提出基于1Vm(一对多算法)的多种道路SVM一次性高精度提取的多分类策略,在提高精度的同时,兼顾了道路特征识别的效率。研究结果表明:SVM对线状道路模式判别能力比常规方法有更强的优势,对小样本的道路识别效果更加明显,从遥感影像中不仅能准确地辨别出道路的线形特征,还能识别出其材质和类型;该算法能同时识别出多种道路,执行效率更高。 相似文献
5.
提出了一种基于支持向量机的快速高光谱分类方法.首先采用基于主成分分析和Bhattacharyya距离的方法进行特征降维,然后通过二叉树的支持向量机(Binary tree of SVMs,BTS)来减少一次分类所需的两类支持向量机个数,最后采用简化支持向量技术进一步减少支持向量的数量.实验采用真实高光谱数据,并与4种其他方法进行比较.结果表明,该方法能有效地加快分类速度. 相似文献
6.
基于深度极限学习机的高光谱遥感影像分类研究 总被引:1,自引:0,他引:1
高光谱遥感数据越来越普及并为人们广泛使用,基于高光谱遥感数据的地面物体精确分类是高光谱遥感技术的核心应用之一.针对高光谱遥感影像的分类问题,提出一种基于深度极限学习机(D-ELM)的分类方法.该方法利用一种新的深度学习模型——深度极限学习机对高光谱遥感影像进行分类,并与基于极限学习机(ELM)、支持向量机(SVM)、核极限学习机(ELMK)分类方法进行了比较分析.研究结果表明:相对于ELM、SVM、ELMK分类方法,D-ELM分类方法能够更加准确地挖掘高光谱遥感影像的空间分布规律,提高分类的准确度. 相似文献
7.
探讨高光谱遥感影像分类算法处理遥感影像速度。通过光谱角度匹配(SAM)、光谱相关系数匹配(SCM)、信息散度匹配(SIDM)、光谱波形匹配(SWM)进行并行化改造设计,将改造的并行化算法应用到湖北大冶遥感影像数据分类处理中,结果表明并行化算法能够有效完成高光谱遥感影像分类,数据量增大,并行化处理速度加快,数据量为158×382×1092时, SAM 并行处理速度是串行处理速度的25.68倍、SCM 为25.41倍、SIDM 为17.55倍、SWM为23.68倍。并行分类算法处理遥感影像分类速度较串行分类算法处理快。 相似文献
8.
提出一种基于潜在低秩图判别分析(LatLGDA)算法,利用数据的自表示对数据的列表示系数矩阵和行表示系数矩阵同时施加低秩约束,得到保留数据结构的亲和矩阵,再与图嵌入模型相结合实现高光谱图像的流形降维并进行分类。与其他基于稀疏图或稀疏低秩图的高光谱特征提取算法相比,LatLGDA可利用数据的行信息弥补列信息的不足或缺失,对噪音的抗干扰能力更强;在真实数据集上的实验结果表明,LatLGDA算法具有较高的分类精度和运算效率,应用前景广阔。 相似文献
9.
提出一种基于合成核支持向量机的高光谱数据分类方法。该方法首先对高光谱数据进行分组, 对得到的不同数据组分别运用支持向量机方法进行分类参数的优化, 然后组合不同的核函数来综合不同的数据组, 得到最终的分类结果。利用华盛顿地区 HYDICE 高光谱数据对所提出的方法进行评价和验证, 结果表明, 基于合成核支持向量机的高光谱图像分类, 可获得比传统支持向量机更高的分类精度。 相似文献
10.
针对多数高光谱影像分类方法提取信息不够充分导致分类准确率不够高的问题,提出了一种双通道时间稠密网络的高光谱影像分类方法。该方法利用时间卷积网络模型提取高光谱数据的光谱特征信息,利用稠密网络模型提取高光谱影像数据的空间信息特征,然后将两个网络各自提取到的特征进行融合,最后将融合后的特征送入Softmax分类器进行分类。在Pavia大学经典数据集上进行了仿真实验,将该方法分别同传统高光谱影像分类方法、单空间信息高光谱影像分类方法、单光谱信息分类方法进行了对比。实验结果表明,与多种经典分类方法相比,所提出的方法可以有效地从空间结构和光谱通道提取目标的特征信息,在常用的经典数据集上分类精度可达到99%分,较其他方法高出2%~3%。 相似文献
11.
高光谱图像(HSI)在获取过程中不可避免地受到各种噪声的干扰,如高斯白噪声、冲击噪声、坏死的线条等.为了确保后续应用能够顺利进行,高光谱图像的恢复是一项重要的预处理过程.文中提出一种新的高光谱图像恢复方法,主要有以下两点贡献:其一,将低秩表示模型引入到高光谱图像恢复中;其二,利用高光谱图像的相似图像块进行联合低秩表示.模拟和实际高光谱图像数据的实验结果表明,所提出的方法能有效地去除各种噪声干扰,同时较好地恢复图像细节,因此可作为一种实现高光谱图像恢复的有效手段. 相似文献
12.
周近 《盐城工学院学报(自然科学版)》2015,28(3):47-51
良好的特征提取方法能减轻后续图像分类与识别的工作量。针对具体的分类问题提出了不同的特征提取方法,并在图像分类和识别任务上取得了较好的效果。然而,已有的基于传统方法的特征提取存在一些明显不足,即随着视觉任务规模的增大,直接利用这些传统方法进行特征分类,效果并不理想。提出的特征表达方法,在图像最基本特征基础上进行矢量量化、稀疏编码或其它表达以形成一幅图像最后的特征。着重介绍基于稀疏表示的特征分类算法并对其进行分析,最后探讨存在的问题和今后研究的方向。 相似文献
13.
稀疏表示分类算法在有监督的图像识别上有广泛的应用.该分类算法的准确度与训练样本个数有很大的关联.通常训练样本越充分,则该算法分类准确率越高,然而遇到小样本问题时,该算法分类准确率会明显降低.针对小样本问题,提出使用基于图像边缘位移的方法,得到和原始训练图像样本高度相关的新样本,达到扩充训练样本容量的目的,进而提高算法的分类准确率.同时,对于带仿射约束的稀疏表示分类算法,也可以经过图像边缘位移方法来提高分类准确率.实验结果证明,所用方法能够取得较好的图像识别效果. 相似文献
14.
利用稀疏表示对图像分类时,需要将二维图像转换为一维特征向量,这大大增加了计算复杂度和忽略了图像矩阵中固有的局部结构信息.为了解决上述问题,设计了完全基于二维特征矩阵的稀疏表示人脸分类方法.首先将二维图像转为2D Fisherface矩阵,然后直接利用二维矩阵求解稀疏表示和进行分类.整个识别过程中,不需要将二维图像转换为一维向量.实验结果表明,二维特征矩阵在稀疏表示分类中是十分有效的,设计的方法可以更快的运算速度达到更高的识别率.在ORL人脸数据库和Extended Yale B人脸数据库上的识别率分别达到97.5%和99.3%. 相似文献
15.
讨论基于稀疏矩阵的文档图像存储及处理方法 .采用三向量法或链表法表示稀疏图像 ,然后在稀疏域直接实现某些基于临域运算的图像处理算法 .分析表明 ,对于具有显著特征的文档图像能有效地节省存储空间并提高计算效率 .以卷积运算和一种文档图像处理运算为例 ,给出实验结果 相似文献
16.
采用联合动态稀疏表示方法构造一种新型的多图像人脸识别模型.该模型在多张人脸图像的稀疏表示矩阵上,利用动态数集得到联合动态稀疏表示矩阵,识别多图像的人脸.在多张人脸图像作为测试样本的情况下,利用多图像之间的关联性提高人脸图像识别的准确率.最后利用CMU人脸图像库对该算法进行仿真,结果表明其识别率较其他算法有很大的提高. 相似文献
17.
The sparse representation-based classification algorithm has been used for human face recognition.But an image database was restricted to human frontal faces with only slight illumination and expression changes.Cropping and normalization of the face needs to be done beforehand.This paper uses a sparse representation-based algorithm for generic image classification with some intra-class variations and background clutter.A hierarchical framework based on the sparse representation is developed which flexibly combines different global and local features.Experiments with the hierarchical framework on 25 object categories selected from the Caltech101 dataset show that exploiting the advantage of local features with the hierarchical framework improves the classification performance and that the framework is robust to image occlusions,background clutter,and viewpoint changes. 相似文献
18.
复合绝缘子表面憎水性的检测是判断其防污闪性能的主要手段之一.本文引入稀疏表示分类算法实现了对复合绝缘子憎水性图像的检测分类.运用最小一范数方法计算稀疏表示系数,通过计算最小残差图像来搜索与测试图像最匹配的训练样本图像,从而准确识别出检测试样的憎水性HC等级.该算法避开了一般模式识别算法中较复杂的特征提取环节,为复合绝缘子憎水性图像识别检测提供了新的思路.实验结果表明,该方法能有效地应用于复合绝缘子憎水性图像的分级. 相似文献
19.
为了以较小的压缩误差为代价解决高效压缩高光谱数据的难题,提出基于线性光谱混合理论的星上高光谱图像压缩算法.利用顶点成分分析求高光谱图像的端元向量,并根据信道容量选择端元数;基于线性光谱混合模型求各像元对应于端元向量的丰度值;用JPEG2000对端元向量和丰度值矩阵进行无损压缩.对AVIRIS高光谱图像的仿真结果表明:压缩比为80∶1时,原始光谱与解压缩重构光谱最大相对误差小于2.7%,最大光谱角余弦误差小于0.000 23,压缩性能优于现有算法;算法还能有效地抑制原始图像中的随机噪声. 相似文献