首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2012年8月9日,国际权威学术期刊《自然》以封面标题的形式,发表了中国科技大学合肥微尺度物质科学国家实验室潘建伟团队的研究新成果:他们在国际上首次成功地实现了百千米量级的自由空间量子隐形传态和纠缠分发.团队的领军人物、中国科学院迄今最年轻的院士潘建伟兴奋地说:"由于自由空间信道的损耗小,借助卫星将有可能实现在全球尺度上进行超远距离量子通信的梦想."这个"量子梦"已在他心中做了十多年.  相似文献   

2.
正基于光子的量子计算机完成了普通计算机可能永远完成不了的计算任务。近期,中国科学技术大学潘建伟领衔的团队宣布,他们首次明确演示了"量子优越性"——利用量子力学的反直觉工作原理,处理在经典计算机上慢到可怕的计算任务。该团队利用激光束进行了一项在数学上被证明无法用普通计算机处理的任务。与谷歌2019年首次演示的量子优越性相反,他们的版本几乎是任何经典计算机都难以挑战的。该研究成果于2020年12月3日发表在《科学》杂志上。  相似文献   

3.
<正>"他们使中国科学技术大学,乃至整个中国,牢牢地在量子计算的世界地图上占据了一席之地。"一段来自国外媒体的高度评价,不得不让我们再次审视一个十分高端的项目——"利用测量器件无关量子密钥分发解决量子黑客隐患"。这是一个由中国科学技术大学潘建伟院士及其同事张强、陈腾云与清华大学马雄峰等组成的联合研究小组,在近期取得的最新研究成果。该研究旨在通过量子通信技术这一根本性手段保障信息安全,而主攻方向就是完善量子密钥的分发方案。  相似文献   

4.
潘建伟院士     
《科学24小时》2013,(7):32-35
2012年8月9日,国际权威学术期刊《自然》以封面标题的形式,发表了中国科技大学合肥微尺度物质科学国家实验室潘建伟团队的研究新成果:他们在国际上首次成功地实现了百千米量级的自由空间量子隐形传态和纠缠分发。团队的领军人物、中国科学院迄今最年轻的院士潘建伟兴奋地说:“由于自由空间信道的损耗小,借助卫星将有可能实现在全球尺度上进行超远距离量子通信的梦想。”这个“量子梦”已在他心中做了十多年。如今,这个梦想在潘建伟和其他团队成员的努力下,正一步步变为现实。  相似文献   

5.
<正>近期,由中国科学技术大学潘建伟教授及同事彭承志、张强等组成的研究小组,在国际上首次成功实现了白天远距离(53km)自由空间量子密钥分发,通过地基实验在信道损耗和噪声水平方面有效验证了未来构建基于量子星座的星地、星间量子通信网络的可行性。国际权威学术期刊《自然·光子学》日前发表了该成果。为抑制白天阳光背景噪声,潘建伟团队采用1550nm波段  相似文献   

6.
<正>卫星可将纠缠光子对分发至相距1 200公里的两个城市,这为全球量子通信网络开辟了广阔前景。2016年8月,当潘建伟看到长征火箭从中国酒泉卫星发射中心发射时,他几乎喜极而泣。该火箭搭载的量子科学卫星,是中国科技大学(USTC)潘建伟教授与其同事花了5年时间研制并不断完善的成果。为了获得6.5亿元的项目资金,他花了很多精力游说。当最终看到它离开地面,他说:"简直是一种解脱。"  相似文献   

7.
<正>近日,潘建伟院士及其同事彭承志等人组成的研究团队,与合作者利用"墨子号"量子科学实验卫星,在中国和奥地利之间首次实现距离达7600千米的洲际量子密钥分发。在实验中,"墨子号"分别与河北兴隆、奥地利格拉茨地面站进行了星地量子密钥分发,通过指令控制卫星作为中继,建立了地面站之间的共享密钥。基于共享密钥,中奥联  相似文献   

8.
<正>有这样一群人,他们胸怀科技报国的梦想,奋战在科技创新的最前沿,取得了世界一流的成果,被称为创新中国的科技领航者。潘建伟院士就是这样的一位领航者,他率领科研团队经过十多年的努力奋斗,使我国在世界通信领域从"跟随者、模仿者"转变为"带头人、领跑者"。  相似文献   

9.
1月23日出版的《物理评论快报》上发表了中国科技大学潘建伟教授和他的同事陈增兵、陆朝阳等的研究论文, 在国际上首次通过操纵多光子纠缠态和量子模拟方法, 证实了一种存在于两维空间的奇特粒子“任意子”服从分数统计. 这一研究独辟蹊径地利用量子信息技术来模拟凝聚态物理学里面的重要问题, 在原理上证实了“任意子”独特的分数统计现象和拓扑性质, 在量子计算的实际应用领域迈出了重要一步.........  相似文献   

10.
<正>从100千米、404千米、1200千米到7600千米洲际距离,短短十余年间,潘建伟团队不断取得量子通信在距离和维度上的新突破,一路保持世界领先,赢得了巨大的国际声誉。这一次,中国科学家站在了最前沿。备受关注的量子通信2018年,有着诺贝尔物理学奖风向标之称的沃尔夫物理学奖颁给了在量子通信领域作出开创性理论贡献的两位科学家本内特和布拉萨德,这代表了国际上对量子通信重要意义的肯定。在介绍沃尔夫物理学奖获得者的网页上,专门提到了量子密钥  相似文献   

11.
1月23日出版的《物理评论快报》上发表了中国科技大学潘建伟教授和他的同事陈增兵、陆朝阳等的研究论文,在国际上首次通过操纵多光子纠缠态和量子模  相似文献   

12.
正[本刊讯]中国科学技术大学潘建伟领衔的量子光学和量子信息团队的陆朝阳、刘乃乐研究小组,在国际上首次成功实现了用量子计算机求解线性方程组的实验。该研究成果发表在6月7日出版的Physical ReviewLetters上。线性方程组广泛地应用于几乎每一个科学和工程领域,包括数值计算、信号处理、经济学和计算机科学等。比如与我们日常生活紧密相关的气象预报,就需要建立并求解包含百万变量的线性方程组,来实现对大气中各种物理参数(温度、气压、湿度等)的模拟  相似文献   

13.
[本刊讯]中国科学技术大学潘建伟、陆朝阳研究团队成功实现单光子的自旋和轨道角动量的量子隐形传态(quantum teleportation),这是国际上首次实现多自由度量子体系隐形传态。这一研究成果于2015年2月26日以封面标题的形式发表于Nature。量子隐形传态是通过共享量子纠缠态,并借助经典通道实现量子信息传输的过程。1997年,奥地利的宰林格(Anton Zeilinger)小组首次完成了量子隐形传态的实验验证。该工作成功实现  相似文献   

14.
量子计算与量子信息处理是涵盖了信息理论、计算机理论与量子力学的交叉学科,在信息、物理以及计算机等众多领域有着非常大的影响.量子特性在信息安全、信息容量以及计算速度的提高等方面都具有独特的优势.量子逻辑门是量子计算与量子信息处理中的一个关键模块,因此,如何构建一个合适的逻辑门也是现阶段热门的研究领域.此外,研究量子信息科学,纠缠光子对也是一个不可或缺的元素.目前有很多种产生纠缠光子对的理论和实验方案,例如参量下转换等方案.高维量子系统可以在很大程度上提高量子信道容量和信息存储空间,通过实现高维度量子逻辑门,能够提高量子计算与量子信息处理的速度.然而,直接由两个高维子系统相互作用构建高维逻辑门是很困难的.在这种情况下,即使要实现一个很小的高维逻辑电路,也会耗费大量二维逻辑门.本文主要介绍了利用纠缠光子对的偏振、频率和空间模式自由度实现的二维以及高维单自由度和多自由度的量子逻辑门方案,并探讨了这些方案在量子信息处理和量子计算等方面的应用以及发展趋势.  相似文献   

15.
量子电子学隶属物理学,它和应用技术领域的关系密切,激光是其实用性应用的基础.光电子学或电子光学随着激光的实用化进展而分化并继续发展.无疑量子电子学本身是物理学的分支,而激光光谱学则成为基础物理应用中的重要部分.以下将讨论今后激光和量子电子学的发展.  相似文献   

16.
方德声 《科学》2007,59(2):27-27
据国家自然科学基金委员会2007年2月8日报道.中科大微尺度物质科学国家实验室的工作人员潘建伟和同事杨涛、陆朝阳等,最近通过实验成功制备出国际上纠缠光子数最多的薛定谔猫态和可直接用于量子计算的簇态,刷新光子纠缠和量子计算领域的两项世界纪录。该项研究成果以封面标题的形式发表在最新一期英国胁ture子刊Nature Physics上。审稿人评价其是“光学量子计算领域至今最先进的实验工作”,“为量子计算、量子纠错和量子力学基本问题的研究铺平了道路”。  相似文献   

17.
<正>神奇的量子力学将在水下通讯领域发挥重要作用。中国上海交通大学金贤敏团队首次实现纠缠光子在海水中的传输,他们迈出了水下量子通信的第一步,而通过这种方式传递的信息将不可能被第三方截获。光子是一种很好的量子比特的物理实现,因其能在光纤和大气中传输很长距离却不会受到环境干扰。脉冲激光通过非线性晶体进行相应的相位匹配,产生一对下转换光子。这对具有特殊联系的光子就是纠缠光子源。只要对纠缠光子源中的一个光子做操作,另一个光子会相  相似文献   

18.
<正>27岁,入选美国《科学》杂志"年度全球十大科技进展";29岁,参与的研究成果被《自然》评为"百年物理学21篇经典论文";31岁,任中国科学技术大学教授;41岁,成为中国当时最年轻的院士;45岁,获得国家自然科学一等奖.……他,就是潘建伟,"墨子号"量子科学实验卫星的首席科学家,也是"中国的量子之父"。  相似文献   

19.
作为量子引力论的一种重要的候选理论,圈量子引力已取得了长足的进展.当今圈量子引力研究的一个核心而艰巨的课题是如何建立合理的量子动力学,具体到圈量子引力的正则形式中,动力学问题集中体现为合理构造密顿约束算符以及求解相应的约束方程.本文介绍了圈量子引力的基本思想以及圈量子引力中量子动力学研究的最新进展.新进展侧重于哈密顿约束算符的构造及其所定义的希尔伯特空间.  相似文献   

20.
<正>据悉,哈佛大学研究团队在近日宣布,他们制造出迄今最强量子系统,其拥有51个量子比特,该系统能模拟一种化学反应,研究原子间相互作用。与传统计算机运用二进制(0和1)记录信息不同,量子计算机使用量子叠加态描述信息。但现有量子计算机只能在传统计算机上进行模拟,目前最高只能模拟42个  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号