共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper we lay out a two‐region dynamic stochastic general equilibrium (DSGE) model of an open economy within the European Monetary Union. The model, which is built in the New Keynesian tradition, contains real and nominal rigidities such as habit formation in consumption, price and wage stickiness as well as rich stochastic structure. The framework also incorporates the theory of unemployment, small open economy aspects and a nominal interest rate that is set exogenously by the area‐wide monetary authority. As an illustration, the model is estimated on Luxembourgish data. We evaluate the properties of the estimated model and assess its forecasting performance relative to reduced‐form model such as vector autoregression (VAR). In addition, we study the empirical validity of the DSGE model restrictions by applying a DSGE‐VAR approach. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
3.
We extend the analysis of Christoffersen and Diebold (1998) on long‐run forecasting in cointegrated systems to multicointegrated systems. For the forecast evaluation we consider several loss functions, each of which has a particular interpretation in the context of stock‐flow models where multicointegration typically occurs. A loss function based on a standard mean square forecast error (MSFE) criterion focuses on the forecast errors of the flow variables alone. Likewise, a loss function based on the triangular representation of cointegrated systems (suggested by Christoffersen and Diebold) considers forecast errors associated with changes in both stock (modelled through the cointegrating restrictions) and flow variables. We suggest a new loss function based on the triangular representation of multicointegrated systems which further penalizes deviations from the long‐run relationship between the levels of stock and flow variables as well as changes in the flow variables. Among other things, we show that if one is concerned with all possible long‐run relations between stock and flow variables, this new loss function entails high and increasing forecasting gains compared to both the standard MSFE criterion and Christoffersen and Diebold's criterion. This paper demonstrates the importance of carefully selecting loss functions in forecast evaluation of models involving stock and flow variables. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
4.
Mu‐Chun Wang 《Journal of forecasting》2009,28(2):167-182
In this paper, we put dynamic stochastic general equilibrium DSGE forecasts in competition with factor forecasts. We focus on these two models since they represent nicely the two opposing forecasting philosophies. The DSGE model on the one hand has a strong theoretical economic background; the factor model on the other hand is mainly data‐driven. We show that incorporating a large information set using factor analysis can indeed improve the short‐horizon predictive ability, as claimed by many researchers. The micro‐founded DSGE model can provide reasonable forecasts for US inflation, especially with growing forecast horizons. To a certain extent, our results are consistent with the prevailing view that simple time series models should be used in short‐horizon forecasting and structural models should be used in long‐horizon forecasting. Our paper compares both state‐of‐the‐art data‐driven and theory‐based modelling in a rigorous manner. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
5.
A rapidly growing literature emphasizes the importance of evaluating the forecast accuracy of empirical models on the basis of density (as opposed to point) forecasting performance. We propose a test statistic for the null hypothesis that two competing models have equal density forecast accuracy. Monte Carlo simulations suggest that the test, which has a known limiting distribution, displays satisfactory size and power properties. The use of the test is illustrated with an application to exchange rate forecasting. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
6.
In this paper, we present a comparison between the forecasting performances of the normalization and variance stabilization method (NoVaS) and the GARCH(1,1), EGARCH(1,1) and GJR‐GARCH(1,1) models. Hence the aim of this study is to compare the out‐of‐sample forecasting performances of the models used throughout the study and to show that the NoVaS method is better than GARCH(1,1)‐type models in the context of out‐of sample forecasting performance. We study the out‐of‐sample forecasting performances of GARCH(1,1)‐type models and NoVaS method based on generalized error distribution, unlike normal and Student's t‐distribution. Also, what makes the study different is the use of the return series, calculated logarithmically and arithmetically in terms of forecasting performance. For comparing the out‐of‐sample forecasting performances, we focused on different datasets, such as S&P 500, logarithmic and arithmetic B?ST 100 return series. The key result of our analysis is that the NoVaS method performs better out‐of‐sample forecasting performance than GARCH(1,1)‐type models. The result can offer useful guidance in model building for out‐of‐sample forecasting purposes, aimed at improving forecasting accuracy. 相似文献
7.
This study compares the volatility and density prediction performance of alternative GARCH models with different conditional distribution specifications. The conditional residuals are specified as normal, skewedHyphen;t or compound Poisson (jump) distribution based upon a nonlinear and asymmetric GARCH (NGARCH) model framework. The empirical results for the S&P 500 and FTSE 100 index returns suggest that the jump model outperforms all other models in terms of both volatility forecasting and density prediction. Nevertheless, the superiority of the nonHyphen;normal models is not always significant and diminished during the sample period on those occasions when volatility experiences an obvious structural change. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
In this paper we study the performance of the GARCH model and two of its non-linear modifications to forecast weekly stock market volatility. The models are the Quadratic GARCH (Engle and Ng, 1993) and the Glosten, Jagannathan and Runkle (1992) models which have been proposed to describe, for example, the often observed negative skewness in stock market indices. We find that the QGARCH model is best when the estimation sample does not contain extreme observations such as the 1987 stock market crash and that the GJR model cannot be recommended for forecasting. 相似文献
9.
Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub‐optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out‐of‐sample forecasting performance of various linear and GARCH‐type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decision making. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
10.
This paper compares the information content of realized measures constructed from high‐frequency data and implied volatilities from options in the context of forecasting volatility. The comparison is based on within‐sample and out‐of‐sample (over horizons of 1–22 days) forecasts of daily S&P 500 index return volatility. The paper adds to the findings of previous studies, by considering recent developments in the related practice and the literature. It is shown that, for within‐sample fitting, the realized measure is more informative than the implied volatility. In contrast, the implied volatility is more informative than the realized measure for out‐of‐sample forecasting, in particular for multi‐step‐ahead forecasting. Moreover, we show that it is helpful to use all the information provided by the realized measure and the implied volatility for the within‐sample fitting. For multi‐step‐ahead forecasting, however, it is better to use only the implied volatility. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
Carlos Díaz 《Journal of forecasting》2018,37(3):316-326
This paper shows how to extract the density of information shocks from revisions of the Bank of England's inflation density forecasts. An information shock is defined in this paper as a random variable that contains the set of information made available between two consecutive forecasting exercises and that has been incorporated into a revised forecast for a fixed point event. Studying the moments of these information shocks can be useful in understanding how the Bank has changed its assessment of risks surrounding inflation in the light of new information, and how it has modified its forecasts accordingly. The variance of the information shock is interpreted in this paper as a new measure of ex ante inflation uncertainty that measures the uncertainty that the Bank anticipates information perceived in a particular quarter will pose on inflation. A measure of information absorption that indicates the approximate proportion of the information content in a revised forecast that is attributable to information made available since the last forecast release is also proposed. 相似文献
12.
This paper describes the BBVA‐ARIES, a Bayesian vector autoregression (BVAR) for the European Economic and Monetary Union (EMU). In addition to providing EMU‐wide growth and inflation forecasts, the model provides an assessment of the interactions between key EMU macroeconomic variables and external ones, such as world GDP or commodity prices. A comparison of the forecasts generated by the model and those of private analysts and public institutions reveals a very positive balance in favour of the model. For their part, the simulations allow us to assess the potential macroeconomic effects of macroeconomic developments in the EMU. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
13.
Recent research suggests that non-linear methods cannot improve the point forecasts of high-frequency exchange rates. These studies have been using standard forecasting criteria such as smallest mean squared error (MSE) and smallest mean absolute error (MAE). It is, however, premature to conclude from this evidence that non-linear forecasts of high-frequency financial returns are economically or statistically insignificant. We prove a proposition which implies that the standard forecasting criteria are not necessarily particularly suited for assessment of the economic value of predictions of non-linear processes where the predicted value and the prediction error may not be independently distributed. Adopting a simple non-linear forecasting procedure to 15 daily exchange rate series we find that although, when compared to simple random walk forecasts, all the non-linear forecasts give a higher MSE and MAE, when applied in a simple trading strategy these forecasts result in a higher mean return. It is also shown that the ranking of portfolio payoffs based on forecasts from a random walk, and linear and non-linear models, is closely related to a non-parametric test of market timing. 相似文献
14.
Mauro Costantini Jesus Crespo Cuaresma Jaroslava Hlouskova 《Journal of forecasting》2016,35(7):652-668
We provide a comprehensive study of out‐of‐sample forecasts for the EUR/USD exchange rate based on multivariate macroeconomic models and forecast combinations. We use profit maximization measures based on directional accuracy and trading strategies in addition to standard loss minimization measures. When comparing predictive accuracy and profit measures, data snooping bias free tests are used. The results indicate that forecast combinations, in particular those based on principal components of forecasts, help to improve over benchmark trading strategies, although the excess return per unit of deviation is limited. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
Suleyman Gokcan 《Journal of forecasting》2000,19(6):499-504
ARCH and GARCH models are substantially used for modelling volatility of time series data. It is proven by many studies that if variables are significantly skewed, linear versions of these models are not sufficient for both explaining the past volatility and forecasting the future volatility. In this paper, we compare the linear(GARCH(1,1)) and non‐linear(EGARCH) versions of GARCH model by using the monthly stock market returns of seven emerging countries from February 1988 to December 1996. We find that for emerging stock markets GARCH(1,1) model performs better than EGARCH model, even if stock market return series display skewed distributions. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
16.
This paper considers the forecast accuracy of a wide range of volatility models, with particular emphasis on the use of power transformations. Where one‐period‐ahead forecasts are considered, the power autoregressive models are ranked first by a range of error metrics. Over longer forecast horizons, however, generalized autoregressive conditional heteroscedasticity models are preferred. A value‐at‐risk‐based forecast assessment indicates that, while the forecast errors are independent, they are not independent and identically distributed, although this latter result is sensitive to the choice of forecast horizon. Our results are robust across a number of different asset markets. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Volatility spillover from the US to international stock markets: A heterogeneous volatility spillover GARCH model
下载免费PDF全文

A recent study by Rapach, Strauss, and Zhou (Journal of Finance, 2013, 68(4), 1633–1662) shows that US stock returns can provide predictive content for international stock returns. We extend their work from a volatility perspective. We propose a model, namely a heterogeneous volatility spillover–generalized autoregressive conditional heteroskedasticity model, to investigate volatility spillover. The model specification is parsimonious and can be used to analyze the time variation property of the spillover effect. Our in‐sample evidence shows the existence of strong volatility spillover from the US to five major stock markets and indicates that the spillover was stronger during business cycle recessions in the USA. Out‐of‐sample results show that accounting for spillover information from the USA can significantly improve the forecasting accuracy of international stock price volatility. 相似文献
18.
We propose a simple class of multivariate GARCH models, allowing for time‐varying conditional correlations. Estimates for time‐varying conditional correlations are constructed by means of a convex combination of averaged correlations (across all series) and dynamic realized (historical) correlations. Our model is very parsimonious. Estimation is computationally feasible in very large dimensions without resorting to any variance reduction technique. We back‐test the models on a six‐dimensional exchange‐rate time series using different goodness‐of‐fit criteria and statistical tests. We collect empirical evidence of their strong predictive power, also in comparison to alternative benchmark procedures. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
19.
This paper uses high‐frequency continuous intraday electricity price data from the EPEX market to estimate and forecast realized volatility. Three different jump tests are used to break down the variation into jump and continuous components using quadratic variation theory. Several heterogeneous autoregressive models are then estimated for the logarithmic and standard deviation transformations. Generalized autoregressive conditional heteroskedasticity (GARCH) structures are included in the error terms of the models when evidence of conditional heteroskedasticity is found. Model selection is based on various out‐of‐sample criteria. Results show that decomposition of realized volatility is important for forecasting and that the decision whether to include GARCH‐type innovations might depend on the transformation selected. Finally, results are sensitive to the jump test used in the case of the standard deviation transformation. 相似文献
20.
Jesus Crespo Cuaresma;Ines Fortin;Jaroslava Hlouskova;Michael Obersteiner; 《Journal of forecasting》2024,43(7):2822-2847
We develop an econometric modelling framework to forecast commodity prices taking into account potentially different dynamics and linkages existing at different states of the world and using different performance measures to validate the predictions. We assess the extent to which the quality of the forecasts can be improved by entertaining different regime-dependent threshold models considering different threshold variables. We evaluate prediction quality using both loss minimization and profit maximization measures based on directional accuracy, directional value, the ability to predict turning points, and the returns implied by a simple trading strategy. Our analysis provides overwhelming evidence that allowing for regime-dependent dynamics leads to improvements in predictive ability for the Goldman Sachs Commodity Index, as well as for its five sub-indices (energy, industrial metals, precious metals, agriculture, and livestock). Our results suggest the existence of a trade-off between predictive ability based on loss and profit measures, which implies that the particular aim of the prediction exercise carried out plays a very important role in terms of defining which set of models is the best to use. 相似文献