共查询到19条相似文献,搜索用时 78 毫秒
1.
设矩阵P=(pij)∈Cn×n,如果满足PT=P,P2=I,则称P为广义自反矩阵。设P是n阶对称正交矩阵,对A∈Cn×n,若A=PAP,则称矩阵A为关于P的自反矩阵,所有自反矩阵的全体记为Crn×n(P)。本文研究了自反矩阵的反问题的最小二乘解,给出了最小二乘解和最佳逼近解并得到了反问题的充要条件及解的表达式。 相似文献
2.
3.
提出了子阵约束下实矩阵反问题的最小二乘问题,给出了解的表达式.考虑了解集合对给定矩阵的最佳逼近问题,证明了最佳逼近问题解的存在性与唯一性,给出了求最佳逼近解的数值方法.将所得结果应用于解决子阵约束下实矩阵特征反问题. 相似文献
4.
张宗标 《西昌学院学报(自然科学版)》2011,25(2):21-22,37
本文讨论一类实对称矩阵反问题及其最佳逼近。通过这类矩阵的一些性质给出了反问题解存在的条件和解的一般表达式,不仅证明了最小二乘解的存在唯一性,而且给出了这个解的具体表达式。 相似文献
5.
朱泉涌 《长春师范学院学报》2008,27(3)
讨论了g-循环矩阵反问题的最小二乘解,得到了通解的表达式,给出了该问题有解的充要条件,并讨论了其最佳逼近问题,证明了逼近矩阵的存在惟一性且给出具体表达式。 相似文献
6.
ZHU Quan-yong 《长春师范学院学报》2008,(6)
讨论了g-循环矩阵反问题的最小二乘解,得到了通解的表达式,给出了该问题有解的充要条件,并讨论了其最佳逼近问题,证明了逼近矩阵的存在惟一性且给出具体表达式。 相似文献
7.
运用矩阵的奇异值分解方法,给出了线性流形上矩阵方程组AX=B,XC=D的最小二乘行反对称解。对于任意给定矩阵X珟,得到了上述最小二乘解集合中的惟一最佳逼近解。 相似文献
8.
张宗标 《西昌学院学报(自然科学版)》2011,(1):21-22.37
本文讨论一类实对称矩阵反问题及其最佳逼近。通过这类矩阵的一些性质给出了反问题解存在的条件和解的 一般表达式,不仅证明了最小二乘解的存在唯一性,而且给出了这个解的具体表达式 相似文献
9.
利用矩阵对的标准相关分解、广义奇异值分解和投影定理,给出了矩阵方程ATXA=B的双反对称最小二乘解的一般表达式,在此基础上,求出了给定矩阵的最佳逼近. 相似文献
10.
利用矩阵的奇异值分解得到Φ=‖ATX XTA-B‖=min的通解,和矩阵方程ATX XTA=B有解的充分必要条件并在有解时给出其一般表达式. 相似文献
11.
有界闭集上酉矩阵的反问题 总被引:2,自引:0,他引:2
许贵平 《华东师范大学学报(自然科学版)》1998,(1):7-11
令S={A∈Mm|‖AX1-B1‖AX1-B1‖=min,X1,B1∈Cm×p},其中Cm×p表示m×p阶复矩阵,Mm表示m×m阶酉矩阵,‖·‖表示Frobenius范数。本文考虑如下问题:问题Ⅰ:给定矩阵X2,B2∈Cm×n,求A∈S,使:f(A)=‖AX2-B2‖=min其解集记为S2。问题Ⅱ:给定矩阵,求满足:本文给出了解集SA的通式及逼近解的表示式和一些有关的结果,并给出了相应的数值算法。 相似文献
12.
利用矩阵的奇异值分解和矩阵的Kronecker乘积, 讨论构造对称次反对称矩阵M,C和K, 使得二次约束Q(λ)=λ2M+λC+K具有给定特征值和特征向量的特征值反问题. 首先证明反问题是可解的, 并给出了解集SMCK的通式. 进而考虑了解集SMCK中对给定矩阵的最佳逼近问题, 得到了最佳逼近解. 相似文献
13.
二次特征值反问题的中心斜对称解及其最佳逼近 总被引:1,自引:0,他引:1
利用矩阵的奇异值分解,讨论构造n阶中心斜对称矩阵M,C和K,使得二次束Q(λ)=λ2M λC K具有给定特征值和特征向量的特征值反问题.首先证明反问题是可解的,并给出了解集SMCK的通式.然后考虑从解集SMCK中求给定矩阵[M~,~C,~K]的最佳逼近问题,给出了最佳逼近解的存在唯一性及表达式. 相似文献
14.
15.
在线性约束下矩阵束最佳逼近问题中.对给定的条件做一改变,解决了一个矩阵束最佳逼近问题.当A和B满足同时奇异值分解(SSVD)时,即A=U(∑1 0 0 0)V^T,B=U(∑2 0 0 0)V^T时,解决了一个关于X的矩阵方程反问题:||AXB^T+BXA^T-C||F=min,AXB^T+BXA^T=C,得到了它的对称解,并给出方程的极小Frobenius范数解. 相似文献
16.
一类四元数矩阵方程的反中心对称解及其最佳逼近 总被引:1,自引:0,他引:1
利用四元数矩阵对的广义奇异值分解,讨论四元数矩阵方程AXB=C具有反中心对称解的充要条件,得到解的具体表达式,并应用Frobenius范数酉不变性,在该方程的反中心对称解集合中导出与给定相同类型矩阵的最佳逼近解的表达式. 相似文献
17.
本文讨论了如下广义特征值反问题及最佳逼近.给定矩阵X和对角阵Λ,求Hermite广义Hamilton矩阵广义特征值反问题AX=BXΛ的解(A,B),利用矩阵的奇异值分解和矩阵分块法,给出了其解的一般表达式.并且考虑了解集合对给定矩阵的最佳逼近问题,给出了惟一最佳逼近解的表达式. 相似文献
18.
对称正交对称矩阵的广义特征值反问题 总被引:1,自引:0,他引:1
已知矩阵X及对角阵Λ, 讨论对称正交对称矩阵广义特征值反问题AX=BXΛ的解(A,B). 利用矩阵的奇异值分解和矩阵分块法, 给出其解的一般表达式, 并用算例说明了这种方法是可行的. 相似文献
19.
在线性约束下矩阵束最佳逼近问题中,对给定的条件做一改变,解决了一个矩阵束最佳逼近问题.设A、B、C都是m×n阶矩阵,当A和B满足同时奇异值分解(SSVD)时,解决了一个关于X,Y的矩阵方程AX+YB=C的反问题即求X∈SRn×n,Y∈SRm×m,使得满足‖AX+YB-C‖F=min,得到了其Frobenius范数对称解. 相似文献