首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Position-dependent properties of retinal axons and their growth cones   总被引:2,自引:0,他引:2  
F Bonhoeffer  J Huf 《Nature》1985,315(6018):409-410
The formation of the very orderly neuronal projection from the retina to the optic tectum is not yet understood, but several mechanisms are thought to be involved in a coordinated fashion. These mechanisms may include mechanical or chemical guidance in channels, guidance by spatial gradients of positional markers, gradients of temporal (maturation) markers or specific inter-axon interactions (see ref. 1 for review). The last-mentioned mechanism could explain the fibre order found in optic nerve and tract. It requires that some or all growing retinal axons can distinguish between retinal axons of various origins and grow preferentially along retinal axons originating from the same area as themselves. The in vitro experiments described here show that growth cones from the temporal half of the chick retina grow preferentially along temporal axons, whereas growth cones from nasal retina do not distinguish between nasal and temporal axons.  相似文献   

2.
Wang GX  Poo MM 《Nature》2005,434(7035):898-904
Ion channels formed by the TRP (transient receptor potential) superfamily of proteins act as sensors for temperature, osmolarity, mechanical stress and taste. The growth cones of developing axons are responsible for sensing extracellular guidance factors, many of which trigger Ca2+ influx at the growth cone; however, the identity of the ion channels involved remains to be clarified. Here, we report that TRP-like channel activity exists in the growth cones of cultured Xenopus neurons and can be modulated by exposure to netrin-1 and brain-derived neurotrophic factor, two chemoattractants for axon guidance. Whole-cell recording from growth cones showed that netrin-1 induced a membrane depolarization, part of which remained after all major voltage-dependent channels were blocked. Furthermore, the membrane depolarization was sensitive to blockers of TRP channels. Pharmacological blockade of putative TRP currents or downregulation of Xenopus TRP-1 (xTRPC1) expression with a specific morpholino oligonucleotide abolished the growth-cone turning and Ca2+ elevation induced by a netrin-1 gradient. Thus, TRPC currents reflect early events in the growth cone's detection of some extracellular guidance signals, resulting in membrane depolarization and cytoplasmic Ca2+ elevation that mediates the turning of growth cones.  相似文献   

3.
RGM is a repulsive guidance molecule for retinal axons   总被引:15,自引:0,他引:15  
Axons rely on guidance cues to reach remote targets during nervous system development. A well-studied model system for axon guidance is the retinotectal projection. The retina can be divided into halves; the nasal half, next to the nose, and the temporal half. A subset of retinal axons, those from the temporal half, is guided by repulsive cues expressed in a graded fashion in the optic tectum, part of the midbrain. Here we report the cloning and functional characterization of a membrane-associated glycoprotein, which we call RGM (repulsive guidance molecule). This molecule shares no sequence homology with known guidance cues, and its messenger RNA is distributed in a gradient with increasing concentration from the anterior to posterior pole of the embryonic tectum. Recombinant RGM at low nanomolar concentration induces collapse of temporal but not of nasal growth cones and guides temporal retinal axons in vitro, demonstrating its repulsive and axon-specific guiding activity.  相似文献   

4.
Calcium signalling in the guidance of nerve growth by netrin-1   总被引:7,自引:0,他引:7  
Pathfinding by growing axons in the developing nervous system is guided by diffusible or bound factors that attract or repel the axonal growth cone. The cytoplasmic signalling mechanisms that trigger the responses of the growth cone to guidance factors are mostly unknown. Previous studies have shown that the level and temporal patterns of cytoplasmic Ca2+ can regulate the rate of growth-cone extension in vitro and in vivo. Here we report that Ca2+ also mediates the turning behaviour of the growth cones of cultured Xenopus neurons that are induced by an extracellular gradient of netrin-1, an established diffusible guidance factor in vivo. The netrin-1-induced turning response depends on Ca2+ influx through plasma membrane Ca2+ channels, as well as Ca2+-induced Ca2+ release from cytoplasmic stores. Reduction of Ca2+ signals by blocking either of these two Ca2+ sources converted the netrin-1-induced response from attraction to repulsion. Activation of Ca2+-induced Ca2+ release from internal stores with a gradient of ryanodine in the absence of netrin-1 was sufficient to trigger either attractive or repulsive responses, depending on the ryanodine concentration used. These results support the model that cytoplasmic Ca2+ signals mediate growth-cone guidance by netrin-1, and different patterns of Ca2+ elevation trigger attractive and repulsive turning responses.  相似文献   

5.
Adaptation in the chemotactic guidance of nerve growth cones   总被引:14,自引:0,他引:14  
Ming GL  Wong ST  Henley J  Yuan XB  Song HJ  Spitzer NC  Poo MM 《Nature》2002,417(6887):411-418
Pathfinding by growing axons in the developing nervous system may be guided by gradients of extracellular guidance factors. Analogous to the process of chemotaxis in microorganisms, we found that axonal growth cones of cultured Xenopus spinal neurons exhibit adaptation during chemotactic migration, undergoing consecutive phases of desensitization and resensitization in the presence of increasing basal concentrations of the guidance factor netrin-1 or brain-derived neurotrophic factor. The desensitization is specific to the guidance factor and is accompanied by a reduction of Ca2+ signalling, whereas resensitization requires activation of mitogen-associated protein kinase and local protein synthesis. Such adaptive behaviour allows the growth cone to re-adjust its sensitivity over a wide range of concentrations of the guidance factor, an essential feature for long-range chemotaxis.  相似文献   

6.
Gosse NJ  Nevin LM  Baier H 《Nature》2008,452(7189):892-895
The retinotectal projection has long been studied experimentally and theoretically, as a model for the formation of topographic brain maps. Neighbouring retinal ganglion cells (RGCs) project their axons to neighbouring positions in the optic tectum, thus re-establishing a continuous neural representation of visual space. Mapping along this axis requires chemorepellent signalling from tectal cells, expressing ephrin-A ligands, to retinal growth cones, expressing EphA receptors. High concentrations of ephrin A, increasing from anterior to posterior, prevent temporal axons from invading the posterior tectum. However, the force that drives nasal axons to extend past the anterior tectum and terminate in posterior regions remains to be identified. We tested whether axon-axon interactions, such as competition, are required for posterior tectum innervation. By transplanting blastomeres from a wild-type (WT) zebrafish into a lakritz (lak) mutant, which lacks all RGCs, we created chimaeras with eyes that contained single RGCs. These solitary RGCs often extended axons into the tectum, where they branched to form a terminal arbor. Here we show that the distal tips of these arbors were positioned at retinotopically appropriate positions, ruling out an essential role for competition in innervation of the ephrin-A-rich posterior tectum. However, solitary arbors were larger and more complex than under normal, crowded conditions, owing to a lack of pruning of proximal branches during refinement of the retinotectal projection. We conclude that dense innervation is not required for targeting of retinal axons within the zebrafish tectum but serves to restrict arbor size and shape.  相似文献   

7.
K Goslin  D J Schreyer  J H Skene  G Banker 《Nature》1988,336(6200):672-674
Outgrowth of distinct axonal and dendritic processes is essential for the development of the functional polarity of nerve cells. In cultures of neurons from the hippocampus, where the differential outgrowth of axons and dendrites is readily discernible, we have sought molecules that might underlie the distinct modes of elongation of these two types of processes. One particularly interesting protein is GAP-43 (also termed B-50, F1 or P-57), a neuron-specific, membrane-associated phosphoprotein whose expression is dramatically elevated during neuronal development and regeneration. GAP-43 is among the most abundant proteins in neuronal growth cones, the motile structures that form the tips of advancing neurites, but its function in neuronal growth remains unknown. Using immunofluorescence staining, we show that GAP-43 is present in axons and concentrated in axonal growth cones of hippocampal neurons in culture. Surprisingly, we could not detect GAP-43 in growing dendrites and dendritic growth cones. These results show that GAP-43 is compartmentalized in developing nerve cells and provide the first direct evidence of important molecular differences between axonal and dendritic growth cones. The sorting and selective transport of GAP-43 may give axons and axonal growth cones certain of their distinctive properties, such as the ability to grow rapidly over long distances or the manner in which they recognize and respond to cues in their environment.  相似文献   

8.
Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1.   总被引:16,自引:0,他引:16  
V H H?pker  D Shewan  M Tessier-Lavigne  M Poo  C Holt 《Nature》1999,401(6748):69-73
Growing axons are guided by both diffusible and substrate-bound factors. Growth cones of retinal neurons exhibit chemoattractive turning towards the diffusible factor netrin-1 in vitro and are guided into the optic nerve head (ONH) by localized netrin-1. Here we report that, in Xenopus, laminin-1 from the extracellular matrix (ECM), converts netrin-mediated attraction into repulsion. A soluble peptide fragment of laminin-1 (YIGSR) mimics this laminin-induced conversion. Low levels of cyclic AMP in growth cones also lead to the conversion of netrin-induced attraction into repulsion, and we show that the amount of cAMP decreases in the presence of laminin-1 or YIGSR, suggesting a possible mechanism for laminin's effect. At the netrin-1-rich ONH, where axons turn sharply to leave the eye, laminin-1 is confined to the retinal surface. Repulsion from the region in which laminin and netrin are coexpressed may help to drive axons into the region where only netrin is present, providing a mechanism for their escape from the retinal surface. Consistent with this idea, YIGSR peptides applied to the developing retina cause axons to be misdirected at the ONH. These findings indicate that ECM molecules not only promote axon outgrowth, but also modify the behaviour of growth cones in response to diffusible guidance cues.  相似文献   

9.
Schmitt AM  Shi J  Wolf AM  Lu CC  King LA  Zou Y 《Nature》2006,439(7072):31-37
Computational modelling has suggested that at least two counteracting forces are required for establishing topographic maps. Ephrin-family proteins are required for both anterior-posterior and medial-lateral topographic mapping, but the opposing forces have not been well characterized. Wnt-family proteins are recently discovered axon guidance cues. We find that Wnt3 is expressed in a medial-lateral decreasing gradient in chick optic tectum and mouse superior colliculus. Retinal ganglion cell (RGC) axons from different dorsal-ventral positions showed graded and biphasic response to Wnt3 in a concentration-dependent manner. Wnt3 repulsion is mediated by Ryk, expressed in a ventral-to-dorsal decreasing gradient, whereas attraction of dorsal axons at lower Wnt3 concentrations is mediated by Frizzled(s). Overexpression of Wnt3 in the lateral tectum repelled the termination zones of dorsal RGC axons in vivo. Expression of a dominant-negative Ryk in dorsal RGC axons caused a medial shift of the termination zones, promoting medially directed interstitial branches and eliminating laterally directed branches. Therefore, a classical morphogen, Wnt3, acting as an axon guidance molecule, plays a role in retinotectal mapping along the medial-lateral axis, counterbalancing the medial-directed EphrinB1-EphB activity.  相似文献   

10.
D Bentley  A Toroian-Raymond 《Nature》1986,323(6090):712-715
A major question in developmental neurobiology is how developing nerve cells accurately extend processes to establish connections with their target cells. This problem involves both the nature of cues for growth cone guidance and also the question of how growth cones survey their environment for cues and respond by altering their direction of migration. The filopodia which normally extend from neuronal growth cones have been shown to affect growth cone steering in vitro and it has been proposed that they function in vivo in the detection of and response to guidance cues. This hypothesis could be tested in vivo if growth cones which normally have filopodia could be induced to migrate in their absence. The pair of Ti1 neurones are the first neurones to extend axons through the limb buds of embryonic grasshoppers. We report here an examination of the migration of Ti1 pioneer growth cones deprived of filopodia by culture in agents which disrupt actin microfilaments. Under these conditions, axons continue to extend but a large percentage of growth cones are highly disoriented. Our results indicate that Ti1 filopodia are not necessary for axonal elongation in vivo but that they are important for correctly oriented growth cone steering.  相似文献   

11.
A Caceres  K S Kosik 《Nature》1990,343(6257):461-463
Neurons in culture can have fundamentally distinct morphologies which permit their cytological identification and the recognition of their neurites as axons or dendrites. Microtubules may have a role in determining morphology by the selective stabilization of spatially distinct microtubule subsets. The plasticity of a neurite correlates inversely with the stability of its component microtubules: microtubules in growth cones are very dynamic, and in initial neurites there is continuous incorporation of labelled subunits, whereas in mature neurites, microtubules are highly stabilized. The binding of microtubule-associated proteins to the microtubules very probably contributes to this stability. Cerebellar neurons in dissociated culture initially extend exploratory neurites and, after a relatively constant interval, become polarized. Polarity becomes evident when a single neurite exceeds the others in length. These stable neurites cease to undergo the retractions and extensions characteristic of initial neurites and assume many features of axons and dendrites. We have now studied the role of the neuronal microtubule-associate protein tau in neurite polarization by selectively inhibiting tau expression by the addition of antisense oligonucleotides to the culture media. Although the extension of initial exploratory neurites occurred normally, neurite asymmetry was inhibited by the failure to elaborate an axon.  相似文献   

12.
K J Kotrla  C S Goodman 《Nature》1984,311(5982):151-153
During development, neurones find and interconnect with their targets in a remarkably precise way. The unfolding of neuronal specificity involves a series of highly specific recognition events which are likely to be coordinated by the spatial and temporal expression of many different surface molecules. At early stages of development, neuronal recognition occurs most dramatically at the tips of growing axons, at growth cones and their filopodia. Previous studies on the grasshopper embryo suggest that specific filopodial contacts lead to the stereotyped patterns of selective axonal fasciculation; these results support the 'labelled pathways' hypothesis which predicts that the different neighbouring axon fascicles in the embryonic neuropil within filopodial grasp are differentially labelled. To uncover the molecular labels on fasciculating embryonic axons, we screened 2,000 monoclonal antibodies generated against the embryonic neuroepithelium. Here we describe three antibodies which reveal surface antigens whose temporal and spatial expression during embryogenesis correlate with the predictions of the model. In particular, the Mes-2 antibody recognizes an antigen which is transiently expressed on the surface of only 4 out of approximately 1,000 neurones in each metathoracic hemisegment during a short period of embryogenesis. The growth cones of two of these neurones fasciculate in the periphery and innervate the same target. Moreover, they transiently express the Mes-2 surface antigen while doing so.  相似文献   

13.
A L Joyner  W C Skarnes  J Rossant 《Nature》1989,338(6211):153-156
A full understanding of the function of genes that control developmental events can be obtained only by a combination of molecular and mutational analysis. One putative developmental gene is the mouse engrailed-like gene En-2, which was isolated by virtue of its extensive homology to Drosophila engrailed, which contributes to the control of segmentation in the developing insect. Our hybridization analysis in situ has revealed that expression of En-2 is restricted to a specific domain of the developing central nervous system from 8 days of development on, indicating a role for the gene in establishing spatial domains in the brain. Unfortunately no En-2 mutations are available to elucidate further its function in development. To this end, we report here the isolation of three pluripotent embryonic stem cell lines in which one copy of the homoeobox-containing gene, En-2, has been altered by homologous recombination.  相似文献   

14.
15.
Direct activation of RNA polymerase III transcription by c-Myc   总被引:13,自引:0,他引:13  
Gomez-Roman N  Grandori C  Eisenman RN  White RJ 《Nature》2003,421(6920):290-294
  相似文献   

16.
E Schwob  R P Martin 《Nature》1992,355(6356):179-182
Actin, a major cytoskeletal component of all eukaryotic cells, is one of the most highly conserved proteins. It is involved in various cellular processes such as motility, cytoplasmic streaming, chromosome segregation and cytokinesis. The actin from the yeast Saccharomyces cerevisiae, encoded by the essential ACT1 gene, is 89% identical to mouse cytoplasmic actin and is involved in the organization and polarized growth of the cell surface. We report here the characterization of ACT2, a previously undescribed yeast split gene encoding a putative protein (391 amino acids, relative molecular mass (Mr) 44,073) that is 47% identical to yeast actin. The requirement of the ACT2 gene for vegetative growth of yeast cells and the existence of related genes in other eukaryotes indicate an important and conserved role for these actin-like proteins. Superimposition of the Act2 polypeptide onto the three-dimensional structure of known actins reveals that most of the divergence occurred in loops involved in actin polymerization, DNase I and myosin binding, leaving the core domain mainly unaffected. To our knowledge, the Act2 protein from S. cerevisiae is the first highly divergent actin molecule described. Structural and physiological data suggest that the Act2 protein might have an important role in cytoskeletal reorganization during the cell cycle.  相似文献   

17.
Neuronal growth cones are guided to their targets by attractive and repulsive guidance cues. In mammals, netrin-1 is a bifunctional cue, attracting some axons and repelling others. Deleted in colorectal cancer (Dcc) is a receptor for netrin-1 that mediates its chemoattractive effect on commissural axons, but the signalling mechanisms that transduce this effect are poorly understood. Here we show that Dcc activates mitogen-activated protein kinase (MAPK) signalling, by means of extracellular signal-regulated kinase (ERK)-1 and -2, on netrin-1 binding in both transfected cells and commissural neurons. This activation is associated with recruitment of ERK-1/2 to a Dcc receptor complex. Inhibition of ERK-1/2 antagonizes netrin-dependent axon outgrowth and orientation. Thus, activation of MAPK signalling through Dcc contributes to netrin signalling in axon growth and guidance.  相似文献   

18.
Bcr encodes a GTPase-activating protein for p21rac   总被引:45,自引:0,他引:45  
D Diekmann  S Brill  M D Garrett  N Totty  J Hsuan  C Monfries  C Hall  L Lim  A Hall 《Nature》1991,351(6325):400-402
More than thirty small guanine nucleotide-binding proteins related to the ras-encoded oncoprotein, termed Ras or p21ras, are known. They regulate many fundamental processes in all eukaryotic cells, such as growth, vesicle traffic and cytoskeletal organization. GTPase-activating proteins (GAPs) accelerate the intrinsic rate of GTP hydrolysis of Ras-related proteins, leading to down-regulation of the active GTP-bound form. For p21ras, two GAP proteins are known, rasGAP and the neurofibromatosis (NF1) gene product. There is evidence that rasGAP may also be a target protein for regulation by Ras and be involved in downstream signalling. We have purified a GAP protein for p21rho, which is involved in the regulation of the actin cytoskeleton. Partial sequencing of rhoGAP reveals significant homology with the product of the bcr (breakpoint cluster region) gene, the translocation breakpoint in Philadelphia chromosome-positive chronic myeloid leukaemias. We show here that the carboxy-terminal domains of the bcr-encoded protein (Bcr) and of a Bcr-related protein, n-chimaerin, are both GAP proteins for the Ras-related GTP-binding protein, p21rac. This result suggest that Bcr could be a target for regulation by Rac and has important new implications for the role of bcr translocations in leukaemia.  相似文献   

19.
C C Garner  R P Tucker  A Matus 《Nature》1988,336(6200):674-677
For nerve cells to develop their highly polarized form, appropriate structural molecules must be targeted to either axons or dendrites. This could be achieved by the synthesis of structural proteins in the cell body and their sorting to either axons or dendrites by specific transport mechanisms. For dendrites, an alternative possibility is that proteins could be synthesized locally in the dendritic cytoplasm. This is an attractive idea because it would allow regulation of the production of structural molecules in response to local demand during dendritic development. The feasibility of dendritic protein synthesis is suggested both by the existence of dendritic polyribosomes and by the recent demonstration that newly synthesized RNA is transported into the dendrites of neurons differentiating in culture. However, to date there has been no demonstration of the selective synthesis of an identified dendrite-specific protein in the dendritic cytoplasm. Here, we use in situ hybridization with specific complementary DNA probes to show that messenger RNA for the dendrite-specific microtubule-associated protein MAP2 (refs 3-5) is present in dendrites in the developing brain. By contrast the mRNA for tubulin, a protein present in both axons and dendrites is located exclusively in neuronal cell bodies.  相似文献   

20.
Motor neuron columnar fate imposed by sequential phases of Hox-c activity   总被引:1,自引:0,他引:1  
Dasen JS  Liu JP  Jessell TM 《Nature》2003,425(6961):926-933
The organization of neurons into columns is a prominent feature of central nervous system structure and function. In many regions of the central nervous system the grouping of neurons into columns links cell-body position to axonal trajectory, thus contributing to the establishment of topographic neural maps. This link is prominent in the developing spinal cord, where columnar sets of motor neurons innervate distinct targets in the periphery. We show here that sequential phases of Hox-c protein expression and activity control the columnar differentiation of spinal motor neurons. Hox expression in neural progenitors is established by graded fibroblast growth factor signalling and translated into a distinct motor neuron Hox pattern. Motor neuron columnar fate then emerges through cell autonomous repressor and activator functions of Hox proteins. Hox proteins also direct the expression of genes that establish motor topographic projections, thus implicating Hox proteins as critical determinants of spinal motor neuron identity and organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号