首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
廖淑娇 《科学技术与工程》2012,12(11):2660-2664
目前,支持向量机( SVM)常用的参数寻优方法存在易陷入局部极值的缺点,而其常用的核函数的逼近精度也有待提高.基于混沌映射的遍历性与随机性和小波变换的局部分析与特征提取能力,提出了一种混沌粒子群优化小波支持向量机(CPSO-WSVM)的算法,并应用它构建汇率预测模型.实验结果表明,相比传统的粒子群优化高斯核SVM(PSO-GSVM)的算法,CPSO-WSVM算法大大提高了预测的精度和效率,应用效果好.  相似文献   

2.
将小波函数引入支持向量机核函数,同时在支持向量机的学习算法上,引入了改进的粒子群优化算法,使得支持向量机的参数得到最优解,从而建立上市公司财务困境预警模型。实验结果表明,本文提出方法的预测准确率高于普通的小波支持向量机预警模型。  相似文献   

3.
基于自适应粒子群支持向量机的短期电力负荷预测   总被引:3,自引:0,他引:3  
针对粒子群优化算法存在易陷入局部最优点的缺点,提出了一种新的基于平均粒距的自适应粒子群优化算法(ASPO).该算法利用种群多样性信息对惯性权重进行非线性调整,并在算法的后期引入速度变异算子和交换算子,使算法摆脱后期易于陷入局部最优点的束缚,同时又保持前期搜索速度快的特性.将该算法应用到基于支持向量机的短期电力负荷预测模型中,对支持向量机的参数进行优化.对某电网的短期负荷预测实际算例仿真分析表明,所提出的基于APSO-SVM方法的预测精度明显优于传统的SVM方法,且速度较快,因此,该算法用于短期电力负荷预测是有效可行的.  相似文献   

4.
支持向量机的参数选择决定了其学习性能和泛化能力,由于在参数的选择范围内可选择的数量是无穷的,在多个参数中盲目搜索最优参数是需要极大的时间代价,并且很难逼近最优。基于此,提出一种基于混沌粒子群的支持向量机参数选择算法。混沌粒子群优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型的复杂度和变量维数.仿真表明,混沌粒子群优化算法是选取SVM参数的有效方法,可以取得令人满意的效果。  相似文献   

5.
基于支持向量回归机和粒子群算法的改进协同优化方法   总被引:1,自引:0,他引:1  
研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群算法求解系统级和学科级优化问题.仿真计算结果表明,设计的协同优化方法可有效求解多学科设计优化问题,...  相似文献   

6.
针对临床上肛门失禁导致的直肠感知功能丧失,提出了一种基于粒子群优化(PSO)的支持向量机(SVM)重建患者直肠感知功能的方法.分析人体直肠压力生理特征,将典型直肠压力收缩波形中的巨大移行性收缩(HAPC)作为产生便意的主要依据,利用小波包分析对直肠压力信号进行特征提取,通过提取的特征向量对基于SVM的直肠感知预测模型进行训练,使用PSO算法对SVM的参数进行优化,并利用训练后的模型进行便意预测,同时对比分析了参数优化后的SVM和不同核函数的SVM便意预测的准确率.实验结果表明,所提出方法切实有效,能够帮助患者重建直肠感知功能.  相似文献   

7.
基于支持向量机的短期负荷预测   总被引:1,自引:0,他引:1  
讨论了现有的支持向量机回归参数选取方法.针对负荷预测建模,采用交叉验证的方法对参数进行选取,得到的最优参数对未来的峰荷进行预测,仿真结果表明了该方法的有效性.  相似文献   

8.
刘伟 《科学技术与工程》2012,12(35):9730-9732,9739
工业用水量预测对工业企业的规划、运行具有非常重要的作用。采用河南省周口市某食品加工企业近10年来工业用水量时间序列记录资料作为训练样本,提出了在支持向量机回归预测中采用粒子群算法优化参数的方法。通过算例分析表明,此算法能够显著提高预测的精度。  相似文献   

9.
为实现高速公路短时非线性交通流的精准预测,依托高速公路运营积累的大量数据资源,构建了基于粒子群优化(par-ticle swarm optimization,PSO)的支持向量回归(support vector regression,SVR)预测模型.首先,对获取的高速公路交通流数据进行异常值剔除、缺失值填充以及归一化...  相似文献   

10.
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法. 针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性.   相似文献   

11.
边坡稳定性与其影响因素之间存在着复杂的非线性关系.结合粒子群优化算法和支持向量机,提出了边坡稳定评价的粒子群优化支持向量机模型.模型采用支持向量机建立边坡稳定性和影响因素之间的非线性关系;同时,利用粒子群算法对支持向量机参数进行全局寻优,从而确保了模型参数的准确性.模型的测试结果显示了良好的精度.将该模型应用到某岩石高边坡中,预测结果与实际情况符合较好,表明该模型在岩石边坡稳定性预测中的可行性和有效性.  相似文献   

12.
为了对人参价格进行预测,分析了影响人参价格因素,通过K-fold交叉验证方法,利用粒子群算法对支持向量机的惩罚参数c和ggamma值进行寻优,建立起2010年1月~2011年12月林下参的价格预测模型.利用粒子群算法优化惩罚参数c为3.6974,利用radial basis function核函数的SVM(Support Vector Machine)对预测集1的预测相关系数为97.316%.  相似文献   

13.
 针对支持向量机网络流量预测误差较大的问题,提出一种基于多分类支持向量机的网络流量预测方法。该方法在网络流量数据训练阶段通过数据编码,使多分类支持向量机的输出逼近编码值,在预测阶段通过数据解码,将多分类支持向量机的输出转换为实际的网络流量预测结果,从而有效地降低了预测误差。实验结果显示,该方法的预测结果与实际采集的网络流量数据具有相同的变化趋势;在同等实验条件下,该方法预测结果的均方根误差为0.487,而单一支持向量机方法、BP 神经网络方法预测结果的均方根误差分别为1.0954 和2.3642,表明基于多分类支持向量机的网络流量预测方法具有更高的准确性。  相似文献   

14.
基于特征集的选择、核函数参数的优化对支持向量机(SVM)模型的预测性能有着重要的影响,提出了一个粒子算法-支持向量机(PSO-SVM)模型.该模型采用PSO对特征集和核函数参数同时进行优化,从而提高SVM模型的预测结果.将所提出的PSO-SVM模型应用到财务危机预警中,取得了较佳的预测结果.  相似文献   

15.
基于离散粒子群和支持向量机的故障诊断方法   总被引:2,自引:0,他引:2  
针对与故障不相关的变量会影响分类器性能,从而导致故障诊断正确率下降,提出一种将离散粒子群算法(PSO)与支持向量机(SVM)相结合寻找故障特征变量的优化算法。该算法实现了数据降维和故障特征保留,有效地提高了故障诊断性能。基于连续搅拌釜式反应器(CSTR)的仿真实例验证了该算法古白有诗性.  相似文献   

16.
基于混沌优化支持向量机的板形预测与优化   总被引:1,自引:0,他引:1  
针对带钢热连轧中板形控制问题, 提出了一种基于最小二乘支持向量机模型的预测和优化算法. 在分析最小二乘支持向量机数学预测模型的基础上, 提出了一种改进的变尺度混沌优化方法, 结合实数编码遗传算法, 进行最优模型参数的搜索. 利用在线实测数据对模型进行训练并进行带钢平直度指数的预测, 并对模型输入参数中的控制参数进行优化以实现板形控制的优化. 仿真结果表明, 与BP神经网络相比, 板形预测精度得到提高, 平直度指数优化约40%, 为进一步提高热连轧板形控制精度提供了一种新的有效方法.  相似文献   

17.
为了实现电动车动力总成噪声品质的预测,以某集中驱动式电动车为例,在考虑动力总成辐射噪声品质频域特性和已设立的敏感频带能量比这一客观评价参数的基础上进行了心理声学参数,即响度、尖锐度、粗糙度、抖动度、语音清晰度等与主观评价的相关性分析,由此建立了电动车动力总成噪声品质粒子群支持向量机预测模型,内容涉及采用支持向量机建立噪声品质预测模型、利用粒子群优化算法对向量基惩罚因子及核函数参数进行优化,最后验证了敏感频带能量比评价参数的有效性。研究结果表明:敏感频带能量比与主观评价相关度达到0.946,可以较好地反映主观感受;基于粒子群支持向量机的噪声品质预测模型的平均相对误差和最大相对误差分别为2.0%和6.7%,表明以敏感频带能量比作为输入特征的粒子群优化支持向量机模型,在电动车动力总成噪声品质的预测精度上优于基于遗传算法优化及网格搜索优化的预测模型。  相似文献   

18.
基于微粒群优化算法和支持向量机的软测量建模   总被引:1,自引:0,他引:1  
在分析基本微粒群优化算法(PSO)和支持向量机(SVM)原理的基础上,采用带有末位淘汰机制的微粒群优化算法优化支持向量机的参数,建立了延迟焦化装置粗汽油干点软测量的微粒群支持向量机模型.该方法利用支持向量机结构风险最小化原则和PSO算法快速全局优化的特点,用于软测量建模.仿真实验表明:所建模型的泛化性能较好,模型具有较高的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号