首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为了揭示深部岩体在复杂应力条件下的强度与破裂特性,构建含不同倾角的D型孔洞砂岩数值试样,并通过单轴压缩试验验证其可靠性;开展双轴加卸载条件下含D型孔洞砂岩破裂过程数值模拟研究,综合考察其力学参数特征以及裂纹扩展特性。研究结果表明:在单轴压缩下,试样峰值强度和弹性模量随孔洞倾角的增大先降低后升高然后再降低,试样最终出现由孔洞左右两侧2条裂纹不断延伸形成的斜向剪切破坏;对于同一倾角孔洞砂岩试样,试样的双轴压缩强度、双轴加卸载强度、单轴压缩强度依次递减;随孔洞倾角增大,试样双轴加卸载破坏时的侧向应力总体呈现下降趋势;D型孔洞倾角对试样的峰值强度影响较小,但对试样裂纹的起裂应力影响较明显;在双轴加卸载条件下,含D型孔洞砂岩的破坏形式较复杂多样,总体呈现出单向剪切、X形剪切和Y形剪切共3种剪切破坏模式。  相似文献   

2.
为揭示缓倾层状岩石在双轴应力状态下的力学特征与损伤演化规律,开展15°倾角以内层状砂岩的双轴压缩试验。为准确描述层状岩石的损伤演化过程,采用等效应变原理,结合横观各向同性岩石的弹性本构关系和统计损伤力学理论,建立双轴应力作用下层状岩石的统计损伤本构模型,并对试样压密段进行修正。分别采用解析法和拟合法对统计损伤模型进行求解验证。研究结果表明:缓倾层状砂岩在双轴应力作用下,其峰值强度和弹性模量均随层理倾角的增大而减小,随侧压的增大而增大;试样在破坏时均表现出劈裂和剪切复合型破坏的形态,随着层理倾角增加,试样破坏的主控因素逐渐由穿切层面的剪切裂纹转变为沿层面的剪切裂纹,随着侧压增大,试样破坏时产生的宏观裂纹逐渐增多,试样被这些裂纹切割成块,甚至出现板裂状剥落破坏;在压密段采用拟合法、弹性段和峰值后区采用解析法所得到的模型曲线与试验曲线吻合很好,所建立的损伤本构方程可以较好地反映缓倾层状岩石在双轴压缩下的损伤效应。  相似文献   

3.
首先,通过岩石受力破坏过程分析给出了岩块的强度参数与岩块破坏时形成的贯穿裂隙强度参数的关系.在此基础上,通过理论推导给出了结构面强度曲线和岩块强度曲线的位置关系,揭示了三轴压缩试验中,在低围压下岩体通常沿结构面破坏,而在高围压下岩体经常沿岩块剪切破坏的机理,并给出了由结构控制转换为应力控制的临界围压的解析解.其次,揭示了在岩体开挖中,岩体破坏的结构控制与应力控制的转换机理,给出了结构控制转化为应力控制的临界初始应力的解析解.算例表明,模型可以有效解释岩体力学行为的结构控制与应力控制的转换机理.  相似文献   

4.
许伟  郭佳奇 《河南科学》2010,28(10):1274-1277
对宜万铁路云雾山隧道灰岩进行室内三轴压缩试验研究,分析与比较了自然状态和饱和状态试样在不同围压下应力-应变关系曲线,结果表明,含水状态和围压对岩石的峰值强度、轴向应变及弹性模量均具有一定影响.在主应力空间内,利用线性莫尔-库伦强度准则拟合试验数据得到岩石的强度参数C,φ值,为该隧道工程的计算分析提供参考.对岩样的破坏特征进行分析后得出:在较低围压下,试样基本上为宏观单一断面的剪切破坏,随着围压的增大,试样有向两个相交的剪切面发展的趋势.  相似文献   

5.
采用改进刚体弹簧方法虚拟实现单轴压缩试验,对不同长径比0.5,1.0,1.5,2.0,2.5,3.0,3.5的裂隙砂岩试样进行数值压缩模拟,研究长径比对裂隙岩石试样破坏过程、应力-应变曲线、峰值强度和破坏形态的影响。结果表明:不同长径比裂隙试样均从预制裂隙端部起裂,随着长径比的增大,裂隙试样大致经历了劈裂-锥形劈裂-剪切破裂的过程,且其内部张拉裂隙数量远远大于剪切裂隙。通过尺寸效应的研究得出单轴压缩试验试样的最佳长径比为2.5~3.0。  相似文献   

6.
利用数值方法建立了隧道计算模型,采用Hoek-Brown准则描述隧道围岩破坏情况,通过厚度折减法,分析了Hoek-Brown准则情况下,隧道开挖的顶板稳定性.得出结论:①随着隧道跨度的增大,安全顶板厚度也逐渐增大,二者关系符合线性特征;②隧道围岩开挖后,大部分处于受压状态,仅在隧道正上方局部位置存在拉应力区域:随着隧道跨度的增大,顶部围岩所承受的拉应力逐渐增大;③跨度较小时.隧道顶板和边墙主要发生剪切破坏,破坏范围呈现以隧道为中心向外扩散的翼型形状;随着跨度的增大,此范围出现部分拉剪破坏区域.  相似文献   

7.
采用颗粒流软件PFC(particle flow code)对非贯通节理岩体加卸荷条件下破坏特性进行研究。对砂岩材料进行室内单轴压缩试验,获取该岩样的抗压强度、弹性模量等宏观特征。采用PFC颗粒流软件中的平行黏结模型,构建完整试样,利用DFN(discrete fracture network)创建非贯通节理,并采用更符合实际工程的应力/时步加卸压方式对非贯通节理模型开展三轴压缩与非线性加轴压卸围压数值模拟。研究结果表明:在三轴压缩模拟中,峰值应力下降主要是因为岩桥内剪切裂纹增多,岩桥上方先出现裂纹的延伸,随后引发岩桥的贯通;在非线性加轴压卸围压模拟中,当轴向应力达到峰值后,岩桥破坏缓慢,且拉伸裂纹与剪切裂纹分布较均匀,岩桥贯通后,裂纹向模型上部进行扩展,最终破坏形式为非贯通节理上下两部分的滑移变形,且节理的破坏程度远大于三轴压缩的破坏程度。在卸荷过程中,节理两侧剪应力最大,岩桥中心次之,节理面的剪应力最小。  相似文献   

8.
基于真三轴试验机对取自某储气库、埋深3 600 m的试样开展了一系列砂岩真三轴压缩试验.研究了真三向应力作用下深部砂岩的强度、变形特征,并将深部砂岩与浅部砂岩的弹性模量、黏聚力、摩擦角和峰值破坏强度进行了对比.结果表明:在一定范围内随着中间主应力的增加,深部砂岩的峰值强度也会增加,深部砂岩的起裂应力和损伤应力也随之增加,峰值处的中间主应变呈现减小的趋势.随着砂岩深度的增加,砂岩的弹性模量、黏聚力和摩擦角均呈现增大的趋势.浅部砂岩峰值破坏强度的八面体剪应力与有效平均正应力表现为非线性关系,而深部砂岩峰值破坏强度的八面体剪应力与有效平均正应力表现为线性关系,且Mogi-Coulomb准则更适用于表述深部砂岩破坏时的强度特征.  相似文献   

9.
单轴压缩条件下普通混凝土柱的峰后非线性尺寸效应   总被引:1,自引:0,他引:1  
将单轴压缩条件下遭受到剪切带(峰值应力之后呈现线性应变软化行为)形式的单一剪切破坏普通混凝土试样的峰后应力-应变曲线斜率的解析解推广为非线性情形.在峰值应力之前,采用Scott模型描述非线性的本构关系.剪切带的非线性应变软化本构关系由导出的最短普通混凝土试样峰后斜率反算.利用得到的峰后本构关系,对其他较长的普通混凝土试样的应力-应变曲线进行了预测.预测的峰后应力-应变曲线依赖于试样的高度,且与实验结果吻合.估算的剪切带内部平均塑性剪切应变远大于在单轴压缩条件下测得的轴向应变的极限值.若测得的峰后应力-应变曲线被视为本构关系,则普通混凝土柱的峰后延性将被极大地低估.  相似文献   

10.
采用RMT-150B岩石力学试验机,对七种不同高径比的石膏试样进行了单轴压缩试验,分析其力学特性及其破坏特征.根据单轴压缩力学试验结果,利用能量耗散理论,分析其能量耗散特性.研究结果表明:随轴压应力的增加,石膏试样内部微裂隙先闭合,而后在其尖端产生了新裂隙;新裂隙随轴压应力的增加而逐渐地扩展、贯通、形成破裂面,最终发生剪切滑移破坏;石膏试样的体积应变随轴压应力的增大,经历了先压缩后增加,最后急剧膨胀,表现出明显的非线性变形;石膏试样的峰值应力、弹性模量随高径比的减小而增大;轴向应变和横向应变随高径比的减小而减小;变形模量与高径比之间的关系不明确,不能用其表征石膏试样的变形特性;高径比越大的石膏试样受压后容易发生剪切破坏,破坏时吸收的能量增量越快,属于脆性破坏,而高径比越小的石膏试样则发生压酥破坏,属于塑性破坏.  相似文献   

11.
基于岩体工程中普遍存在节理裂隙岩体,裂隙岩体在地下工程卸荷扰动后形成复杂应力状态和高水头压力的共同作用下将发生压剪复合破坏或拉剪复合破坏,对裂纹面的应力状态进行分析以判定其破坏模式,并进一步研究岩体裂纹开裂特性及岩桥断裂贯通力学机理,建立相应的临界水压和初裂强度判据。同时,对处于水力劈裂状态的高水头压力隧洞围岩的破坏特性进行模拟。研究结果表明:隧洞在高渗透水压的驱动下周边围岩开始发生水力劈裂,形成拉剪劈裂区;随着内水外渗的发展,随即在拉剪劈裂区外侧形成压剪劈裂带,同时,拉剪区和压剪区继续扩展直至渗流衰减趋于稳定。  相似文献   

12.
为探究圆形洞室围岩在不同围压下加载过程中的力学特征变化,对制作的含圆形洞室的类岩石材料进行双轴加压试验,运用数字图像技术记录全场应变演化过程,并根据室内试验建立颗粒流模型,探究了围压对洞室围岩的抗压强度以及裂纹的发育的影响。结果表明:尺寸效应对模型的力学特征影响较大,圆形洞室模型峰值抗压强度随着洞室尺寸的增加而减小;当围压增大时,压剪作用增强,洞室模型的破坏模式由以张拉应变为主向拉剪复合破坏为主转变;圆形洞室应变集中区域会随着围压的增大由洞口上下侧向两帮转移;当围压逐渐增大,张拉作用被抑制,洞口两侧破坏程度逐渐增加,收缩变形程度逐渐增大;最后通过数值模拟验证了圆形洞室围岩在不同围压下加载过程中的力学变化特征。  相似文献   

13.
隧道与前方大型溶洞应力集中叠加效应   总被引:1,自引:1,他引:0  
在陆家寨岩溶隧道施工期间,曾预报并揭露大型溶洞,施工过程中接近溶腔段围岩变形较大且伴随围岩块体脱落,给隧道施工带来极大的安全隐患。基于深埋球形洞室的弹塑性二次应力分布,结合新奥法隧道施工理念,利用FLAC3D模拟隧道开挖接近并进入大型溶洞的过程。在自重应力场下分析不同大小的球形洞室周围应力场对隧道围岩变形的影响。结果表明:球形洞室会在周围形成中心半径为1. 5倍洞室半径的应力集中带;隧道开挖接近应力集中带时,将引起隧道前方应力集中区与溶洞应力集中带的叠加;随着隧道继续开挖,叠加效应在下一个进尺完成后失效;分布在隧道两侧围岩,该叠加再分散的过程会造成拱顶、拱肩的变形增大,影响隧道开挖的安全。研究为中国岩溶隧道的建设有重要的参考和借鉴价值。  相似文献   

14.
基于混凝土材料的动力损伤特性,建立了其弹塑性损伤本构模型,将该模型应用于强震区某大断面隧道工程,分析了不同地震波入射方向、地震波强度和围岩条件下隧道结构的地震响应与动力损伤规律,探讨了大断面隧道结构的地震损伤特性和破坏机理。研究结果表明:地震波垂直、水平两种入射条件下两者衬砌的压主应力、加速度响应形态相似,但水平入射条件下衬砌结构的应力、加速度响应相较于垂直入射条件更加剧烈;水平入射时衬砌的动力损伤远大于垂直入射时的动力损伤,且动力损伤主要集中于拱腰与墙脚处;围岩条件对隧道衬砌结构的拉主应力响应以及动力损伤有显著影响,V级围岩条件下衬砌结构的最大拉应力是IV级围岩下的5.7倍;隧道结构的地震响应与动力损伤特性也受地震波强度的影响,随着地震波强度增大,应力、加速度响应峰值以及最大动力损伤量均呈现非线性增大趋势,动力损伤随之加剧且由拱腰和墙脚处逐渐向外扩展;在强震区软岩隧道抗震设计以及运营期间震后加固修复应着重注意动力损伤集中的部位。  相似文献   

15.
为了研究冲击荷载下平行双裂隙对岩石破坏的影响,采用二维颗粒流程序对分离式霍普金森杆一维冲击试验进行模拟。对预制平行双裂隙倾角为0°、15°、30°、45°、60°、75°、90°和完整的花岗岩试样进行冲击加载模拟,全面研究了平行双裂隙试件裂纹的萌生、扩展、贯穿的过程。结果表明:在冲击荷载的作用下,平行双裂隙明显降低了岩石强度。裂隙存在时,裂隙倾角与加载方向一致时,试样峰值强度和起裂强度均达到最大,呈劈裂拉伸破坏模式,在倾角为45°左右达到最小值,呈拉剪复合破坏模式。预先存在缺陷的倾角对裂纹萌生和扩展模式有很大影响。对应力场分析,平行双裂隙对应力波的传播产生阻碍,在岩桥区域变化最为明显。  相似文献   

16.
天然岩体包含孔隙、裂隙以及其他缺陷等,这将导致岩体力学性能产生一定的劣化。为研究裂隙倾角对岩体破裂失稳以及变形场的影响,分别制作了倾角为0°、15°、30°、45°、60°、75°和90°的7种预制单裂隙类岩试样,利用ZTRS-210岩石直剪仪和非接触全场应变测量系统进行直剪试验,并对裂纹扩展和全场应变进行同步监测。结果表明:类岩材料的峰值剪应力随裂隙倾角增加表现出增-减-增-减的趋势,裂隙倾角15°时最大,60°时最小;随着裂隙倾角的增加,试样的破坏模式由共面剪切破坏向拉剪复合破坏转变,倾角90°时为沿剪切面剪切破坏,并伴随较多的次生裂纹;相同倾角时,应变场随荷载增加由应变均匀分布转变为应变集中分布;应变均方差在压密阶段以及弹性阶段较小且增长缓慢,在塑性阶段以及破坏阶段骤增。研究结果可为岩体工程稳定性分析提供一定的参考。  相似文献   

17.
本文运用损伤力学中考虑蠕变损伤的力学模型对地下巷道围岩的受力状态进行了分析。结果表明:在考虑围岩强度随时间而变化的因素时,传统的二次支护的力学作用原理需要重新认识,过去的一些软岩支护方法需要改进。  相似文献   

18.
隧道洞壁剪应力分布特征及影响因素分析   总被引:1,自引:0,他引:1  
以隧道围岩位移为参量,推导出仅由围岩变形而产生的隧道洞壁剪应力计算公式.根据隧道洞壁剪应力计算公式可知,影响隧道洞壁剪应力分布的因素有隧道洞壁的部位、围岩弹性模量、隧道半径、锚杆间距、初始地应力因素.本文详细分析了隧道洞壁剪应力的分布特征以及这5个因素对隧道洞壁剪应力分布的影响程度,为隧道的支护设计提供了参考.  相似文献   

19.
王楠  曹小平 《科学技术与工程》2024,24(14):6034-6042
考虑现实生活中隧道面临易燃易爆气体的爆炸和偶发车辆碰撞的爆炸,以甘肃省卓尼县柳林镇附近的奤盖隧道为工程背景,运用有限元软件Midas/GTS NX进行隧道爆炸模拟数值分析,分析了在静力荷载和炸药当量条件下,双联拱隧道的受力影响,对隧道围岩及衬砌进行了位移、速度、加速度和应力时程分析和响应研究。结果表明:当发生爆炸作用时,隧道横向和径向受到应力冲击波以及反射冲击波的影响最为显著,当超过一定值的时候,隧道就会发生局部剪切破坏或剥落破坏;由于反射波的存在,围岩和衬砌的速度和加速度均会呈现出多个峰值,且距爆源位置越近,衬砌的结构损伤也越严重;隧道应力集中区域表现出明显的抗拉抗压,迎爆面应力响应最为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号