共查询到18条相似文献,搜索用时 78 毫秒
1.
采用联合动态稀疏表示方法构造一种新型的多图像人脸识别模型.该模型在多张人脸图像的稀疏表示矩阵上,利用动态数集得到联合动态稀疏表示矩阵,识别多图像的人脸.在多张人脸图像作为测试样本的情况下,利用多图像之间的关联性提高人脸图像识别的准确率.最后利用CMU人脸图像库对该算法进行仿真,结果表明其识别率较其他算法有很大的提高. 相似文献
2.
王彦 《湖北大学学报(自然科学版)》2014,(2):162-165
提出一种基于动态阈值图像分割的人脸识别方法.在灰度级别下,基于图像分割中的Fisher准则,利用Fisher函数的类间均值最大、总类内方差最小的原则,自动获取待检测图像所对应的最佳分类阈值,并根据所得的动态阈值进行肤色分割,然后再根据阈值解码器,实现肤色似然图的二值化,得到肤色分割后的二值化图像,从而检测到包含有人脸的肤色区域.实验结果表明,该方法改善肤色分割性能,能够在负载复杂背景下实现肤色区域的精确分割,提高人脸检测的速度和精度. 相似文献
3.
提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的多姿态人脸识别方法。利用该方法可以将输入的人脸投影到高维特征空间并输出具备姿态鲁棒性的人脸特征,从而进行精确的多姿态人脸识别。经过大量的实验验证,该模型在多个数据集上取得了良好效果。与传统的单路CNN网络层次结构不同,本文方法采用双路CNN网络层次结构并结合度量学习来优化传统的CNN模型。最后,使用Tensorflow深度学习框架进行实验,实验结果表明,该框架的识别准确率比目前几种常用的多姿态人脸识别算法的识别准确率更高。 相似文献
4.
本文全面介绍了常用的人脸图像预处理算法,包括图像锐化、增强对比度、图像的灰度转换以及图像中值滤波、均值滤波、低通滤波等使用滤波技术对人脸进行预处理的方法。此外,本文详细阐述了一种改进的人脸图像检测与识别的预处理方法,应用该方法得到的标准化图像,解决了传统方法无法适用于侧脸和双眼闭上的人脸的问题。 相似文献
5.
为了减少人脸图像中姿势、表情和光照等因素对人脸识别的影响,引用了一种基于脉冲发放强度的脉冲耦合神经网络(PCNN,pulse coupled neural network)的人脸特征提取方法。不同人脸图像具有不同的灰度特征,将人脸图像输入PCNN模型后可以得到各个图像特定的脉冲发放强度矩阵。实验利用脉冲强度矩阵作为人脸特征,并结合距离分类器——余弦距离进行人脸识别。仿真实验表明,基于强度PCNN模型提取的特征能刻画出人脸的细节,对于不同姿势、表情及面部明显遮挡物的人脸图像,具有较好的识别结果。该方法对于复杂人脸图像特征的提取,具有较强的鲁棒性。 相似文献
6.
传统人脸识别方法手工设计特征过程复杂、识别率较低,对于开集人脸识别通用深度学习分类模型特征判别能力较弱。针对这两方面的不足,提出了一种以分类损失与中心损失相结合作为模型训练监督信号的深度卷积神经网络。首先,利用构建的应用场景数据集优调从公共数据集获得初始化参数的深度人脸识别模型,解决训练数据过小和数据分布差异问题,同时提高模型训练速度;然后,以传统损失函数和新的中心损失作为迁移学习过程中的监督信号,使得类内聚合、类间分散,提高模型输出人脸特征的判别能力;最后,对人脸特征进行主成分分析,进一步去除冗余特征,降低特征复杂度,提高人脸识别准确率。实验结果表明,与传统人脸识别算法相比该算法可以自动进行特征提取,并且相对于通用深度学习分类模型该算法通过度量学习使特征表示更具判别力。在自建测试集和LFW、YouTube Faces标准测试集上都取得了较高的识别率。 相似文献
7.
为了克服肺部病变CT表现复杂,极易造成医生误诊的缺点,提出了一种基于相似性度量的医学图像检索算法并用于肺癌的诊断研究,该相似性度量保持了图像的语义相关和视觉相似.首先,根据相似性度量理论构建距离度量学习算法学习一个马氏距离;然后,根据学习的马氏距离度量,提出新的医学图像检索算法,并将提出的算法应用于肺癌的诊断研究.实验结果证明了该检索算法在肺癌诊断应用中的可行性和有效性. 相似文献
8.
提出了一种基于多边缘信息融合的深度学习图像修复模型MEC,将图像修复任务解耦为边缘信息修复任务和条件图像修复任务。首先,MEC通过边缘信息修复网络对缺失图像的多种边缘信息进行修复;之后,修复的边缘信息通过信息融合作为先验知识来辅助缺失图像的修复。实验结果表明,MEC的修复结果无论是在直观感受还是在量化指标上都比现有的深度学习图像修复模型有进一步的提升。 相似文献
9.
构建了一个统一的多图学习框架,来验证在不同类别情感图像中,使用不同级别特征在情感图像检索上的性能表现。首先,提取每个图像在不同层级上的共有特征,其中,从元素级别提取的一般特征作为底层特征;可解释的属性特征作为中层特征;而情感图像的语义感念描述作为高层特征。其次,为每种类型的特征构建一个图模型来验证情感图像检索的性能。最后,将多个图模型合并在一个规范化的框架内来学习每个图模型的优化权重。通过在5个不同数据集上得到的实验结果验证了所提方法的有效性。 相似文献
10.
11.
增强LLE特征分类性能的人脸识别 总被引:1,自引:1,他引:0
为了增强局部线性嵌入(LLE)特征的可分类性,提出一种应用LMNN算法改善LLE特征分类性能的人脸识别方法.LMNN算法寻求一个线性变换,变换空间的欧氏距离等价于原始空间的马氏距离,马氏距离增强了LLE特征的kNN分类性能.在ORL数据库和扩展的YaleB数据库上进行实验,并与其他方法进行了比较.实验结果验证了该算法的有效性. 相似文献
12.
In this paper,a new type of neural network model - Partially Connected Neural Evolutionary (PARCONE) was introduced to recognize a face gender. The neural network has a mesh structure in which each neuron didn't connect to all other neurons but maintain a fixed number of connections with other neurons. In training,the evolutionary computation method was used to improve the neural network performance by change the connection neurons and its connection weights. With this new model,no feature extraction is needed and all of the pixels of a sample image can be used as the inputs of the neural network. The gender recognition experiment was made on 490 face images (245 females and 245 males from Color FERET database),which include not only frontal faces but also the faces rotated from-40°-40° in the direction of horizontal. After 300-600 generations' evolution,the gender recognition rate,rejection rate and error rate of the positive examples respectively are 96.2%,1.1%,and 2.7%. Furthermore,a large-scale GPU parallel computing method was used to accelerate neural network training. The experimental results show that the new neural model has a better pattern recognition ability and may be applied to many other pattern recognitions which need a large amount of input information. 相似文献
13.
基于多分类器融合的人脸识别方法 总被引:3,自引:0,他引:3
提出了一种融合整体和局部信息进行人脸识别的新方法。首先利用DCT LDA方法提取表达人脸信息能力强的左眼、右眼和嘴巴的局部特征,利用F isherface方法和简单频谱脸方法提取人脸的整体特征,然后应用多分类器组合规则融合整体和局部特征,实验结果表明利用加法融合规则在ORL和FERET数据库上识别率分别达到98.45%和90.79%,说明了该方法的有效性,同时也表明将多分类组合应用于人脸识别是一种比较可行的思路。 相似文献
14.
针对当下人脸识别算法复杂、实现困难,提出了一种基于几何特征的动态人脸识别算法.该算法首先进行人脸特征的定位,以反馈形式为基础,提高其准确率.同时对数据采集功能进行了改进.对同一用户采用了不同时刻下的10张图片,减小特征定位引起的偶然误差,提高了识别速度的同时也降低了误识率. 相似文献
15.
人脸图像有效鉴别特征抽取与识别 总被引:1,自引:0,他引:1
基于具有统计不相关性的最优鉴别变换,分析了小样本识别问题,提出了抽取人脸图像有效鉴别特征方法,在Olivetti Research Laboratory(ORL)人脸图像库上得到了平均识别错误率为2.75%的实验结果,这是目前在ORL人脸图像数据库上所得到的最好的实验结果,并在南京理工大学NUST603人脸图像库上得到平均识别错误率为0.9%,的实验结果,这些结果表明所提出的人脸图有效鉴别特征方法 相似文献
16.
基于特征脸和LDA的人脸识别 总被引:7,自引:0,他引:7
简述人脸图像的标准化过程,特征脸,LDA算法的原理及实现过程。用特征脸和LDA相结合的方法进行人脸识别,先用特征脸获取最佳描述特征,然后用LDA获取最佳分类特征,并验证了方案的可行性。实验表明:该识别方法识别效果较好,能够适应表情、光照的变换。 相似文献
17.
针对复杂应用场景下人脸识别系统效率低、实时性差和证件信息运用不充分等问题,设计了基于人脸识别技术的人证比对系统.将该系统应用于多人脸视频场景中,可缩小人脸检测识别范围,提高识别速度和识别率,解决了复杂场景下人脸比对效率低的问题;采用补偿光的办法,解决了强背光对人脸图像检测及特征提取产生的影响. 相似文献