首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
采用惯性平台相对惯性空间以固定角速度绕方位轴旋转的系统方法,构成方位旋转式平台惯导系统(ARGINS),通过调制惯性测量元件沿平台水平方向的输出误差,提高平台式惯导的精度.给出了ARGINS无阻尼情况下的系统误差方程,分析了静基座下的系统误差,并采用Monte-Carlo方法研究了动基座下的系统误差特性.结果表明,相对固定指北式平台惯导,由于水平方向上的惯性测量元件误差引起的随时间发散误差量被调制为常值误差,而常值误差量则被调制为可通过阻尼消除的振荡性误差,达到了抑制惯性测量元件误差的效果.  相似文献   

2.
针对激光陀螺捷联惯导系统(LINS)在动态尤其是高频动态环境下的姿态误差显著增大的问题,重点分析了LINS中圆锥误差产生机理、该误差对姿态精度的影响,在讨论补偿算法的基础上,通过试验获取了大量不同环境下LINs输出数据,依据其高动态误差特性和激光陀螺信号输出特性,提出了硬、软件结合的补偿方案。通过仿真与试验结合,给出并比较了LINS在动态应用环境下的姿态与定位精度补偿效果。研究表明,高频圆锥误差是影响LINS动态姿态孝矛发的主要因素之一,只有通过特殊的高频采集方法结合设计优化补偿算法参数,才能从工程上实现对LINS高频圆锥误差的有效补偿。该项研究有效提高了LINS在动态条件下的应用精度,对其能在更广泛的领域中应用起到积极的推进作用。  相似文献   

3.
光纤陀螺捷联惯导温控系统热仿真技术研究   总被引:1,自引:0,他引:1  
陈永奇  张春熹  任卓恒  崔佳涛 《系统仿真学报》2008,20(4):1049-1051,1059
首先分析了温度对光纤陀螺性能影响的机理,并提出初步的温控方案,为了使温控方案达到最优,建立了光纤陀螺捷联惯导系统热模型,并进行了试验验证,然后利用基于计算流体动力学数值法的热分析软件Flotherm对其进行了热仿真分析,通过调整温度采集点位置,以及控制方案等,对温控系统进行了优化设计,在保证系统精度的前提下,提高了系统环境温度适应性能。  相似文献   

4.
无陀螺捷联惯导系统中,加速度计直接固定在载体上,所以其动态误差对系统精度有显著影响.首先,建立了加速度计动态误差数学模型,给出了动态误差对于九加速度计系统角速度解算的影响,然后,结合三轴转台模型及测试原理,通过网络结构简单、收敛速度快而不存在局部极小值问题的线性神经网络一次性标定了加速度计所有动态误差系数,最后对动态误差标定及补偿结果进行了仿真.仿真结果表明,标定系数的精度随着三轴转台转速的提高而提高,误差标定并补偿后角速度解算精度得到了明显改善.  相似文献   

5.
为进一步提高旋转调制惯导系统的自补偿精度,对旋转调制激光捷联惯导系统误差补偿技术进行了研究。针对双轴转位调制补偿精度有限的问题,提出了一种新的双轴连续正反旋转调制方法。以激光陀螺仪为对象,通过理论分析确定了连续旋转调制内外框架的调制速率;然后在常值误差补偿及有害误差效应补偿机理分析基础上,设计了双轴连续最佳旋转方案,在有效补偿激光捷联惯导系统项误差的同时,抑制了旋转所带来的有害误差效应,实现了旋转激光捷联惯导系统误差的高精度补偿。仿真结果验证了方法的有效性。  相似文献   

6.
光纤捷联惯导系统(SINS)中,光纤陀螺常值漂移是导致SINS导航误差的主要因素.阐述了单轴旋转误差自补偿技术的基本原理,针对传统单轴旋转调制不能补偿与旋转轴平行方向上的陀螺常值漂移误差,给出了一种改进的单轴旋转式惯导系统误差自动补偿方法.将惯性测量组件(Inertial Measurement Unit,IMU)倾斜安装,不与旋转轴正交或重合,理论分析了这种配置方案可以有效地补偿一般单轴旋转方案中不能补偿的光纤陀螺常值漂移误差,从而大大提高系统的导航精度,最后给出了仿真结果.仿真结果表明,改进的单轴旋转方案能够明显的提高惯导系统的精度.  相似文献   

7.
旋转自动补偿捷联惯导系统技术研究   总被引:5,自引:1,他引:5  
利用旋转法补偿陀螺漂移是提高捷联惯导系统精度的有效途径之一。由于旋转的引入,惯性测量单元中陀螺的常值漂移将被调制成周期性信号,通过积分运算可以有效地消除常值陀螺的漂移影响。提出了一种新的单轴旋转调制方案,对该方案进行了理论推导、分析和仿真。与以往的单轴旋转方式及未采用旋转方式时的导航误差进行了比较,结果表明本方案可以消除所有方向上陀螺常值漂移的影响,从而大大提高位置和姿态精度。  相似文献   

8.
提高无陀螺捷联惯导系统角速度解算精度的新方法   总被引:10,自引:3,他引:7  
赵龙  陈哲 《系统仿真学报》2003,15(4):579-580,603
在无陀螺捷联惯导系统中,由于合弃陀螺而使系统具有很多优点,但角速度需从加速度计输出的信号中解算出来,且它的解算误差随时间而发散。所以,抑制角速度解算误差的发散,提高其解算精度是该项技术研发的关键。提出了一种在九加速度方案下提高角速度解算精度的新方法,它是一种利用冗余信息得到残余误差方程,再进行数值迭代的方法。该方法比建立噪声状态估计、利用卡尔曼滤波束修正姿态的方法简单而有效。仿真结果表明,利用此方法能明显提高系统角速度解算精度。  相似文献   

9.
基于Simulink仿真环境建立了捷联惯导系统三轴转台的仿真模型,模拟转台的角振动产生圆锥运动。通过设置陀螺的动态误差系数,对陀螺的动态测量误差产生的圆锥误差进行了仿真研究。分析了陀螺的标度因数误差和交联耦合误差产生的两类圆锥误差:整流误差和伪圆锥误差。提出了根据圆锥误差估计并补偿陀螺的动态误差系数的方法。仿真结果表明经过补偿后,由圆锥误差引起的姿态漂移得到明显改善。  相似文献   

10.
为了有效抑制随时间发散的无陀螺惯性导航系统(GFINS)的误差,提出了一种新的解算算法(GA6A法)。利用合理配置的6个加速度计和1个起辅助作用的低成本速率陀螺仪,形成一种新的准无陀螺惯性导航系统(NGFINS),通过加速度计组合的输出直接解算载体的角速度数值的绝对值,再利用陀螺仪决定角速度的正负性,从而可以使求解载体姿态和位置的积分次数分别减少1次。给出了新算法的理论推导过程,并对该算法进行了可行性和有效性仿真。当计算步长?t=0.01s,仿真迭代10000次时,采用该算法可使载体姿态角精度和位置精度提高70%以上。  相似文献   

11.
依据控制理论中的可观测性分析方法,分析了惯性导航系统快速传递对准算法的可观测性,由此得出不同可观测性条件下不可观测量引起的对准误差,并对引起不同可观测性的载体机动方式进行分类,分析了水平匀速运动、水平转弯运动、摇翼机动和海上摇摆运动这四种常见的载体运动情况下的可观测性。从而为合理地舍去快速传递对准中的状态变量提供了理论依据。  相似文献   

12.
角度随机游走(angle random walk, ARW)误差已成为制约长航时惯性导航系统精度的主要因素。为了减弱ARW对系统精度的影响,针对初始对准和长航时导航两个方面研究误差传播规律及抑制方法。仿真结果表明:ARW直接影响方位对准精度,在长航时的导航中,游走系数N所产生的速度振荡幅值与60N的常值漂移大致相当,姿态振荡误差中的24 h周期因素更为关键,ARW产生的经度误差发散项均方差随时间的平方根增长|系统可采用卡尔曼滤波削弱ARW所造成的对准误差,通过水平阻尼方法可以消除由ARW引起的位置误差中的振荡项。  相似文献   

13.
为分析旋转惯导系统误差自补偿原理,分别推导陀螺漂移的随机常值分量、时间相关分量以及随机游走分量在捷联惯导系统和旋转惯导系统中造成的角度误差及其统计特性,并进行对比。结果表明,旋转可将陀螺漂移中的常值分量完全调制并能抑制时间相关分量的影响,但对随机游走分量造成的误差无调制效果。采用0.1(°)/h漂移率的陀螺和0.2 mg偏置的加速度计研制旋转惯导系统样机并进行导航试验,试验结果表明,该系统可以达到0.2 n mile/h导航精度。  相似文献   

14.
针对目前惯性系统误差补偿模型对静态误差和动态误差处理能力不足的问题,为适应高超声速飞行器长航时、高精度的惯性导航要求,基于神经网络提出一种加速度计拟合模型。在高超声速飞行器飞行前期有准确的卫星导航信息时,收集导航信息和加速度计脉冲信息,利用神经网络强大的非线性拟合能力,在飞行过程中进行在线训练,得到精确的惯性系统模型。仿真结果表明,在存在逐次通电误差和不考虑二次项误差系数的误差补偿模型方法位置导航偏差在数公里和数百米量级的情况下,相同时间内所提方法的位置导航偏差仅为数十米量级,有效提高了高超声速飞行器的导航精度。  相似文献   

15.
随着惯性器件精度的不断提高与高精度导航系统发展的需要,重力扰动成为影响惯性导航系统(inertial navigation system, INS)精度的主要误差源之一。在考虑垂线偏差和重力异常的同时,首先利用解析法推导了重力扰动影响初始对准失准角的误差方程,并将其转化为姿态角误差方程。然后,分析并建立了INS的速度、位置和姿态的误差方程。最后,利用仿真实验验证了重力扰动对INS初始对准的影响。理论分析及仿真实验表明,重力扰动矢量直接影响初始对准姿态角,姿态角误差仅与水平面内的垂线偏差有关,而与重力异常无关。  相似文献   

16.
高精度激光陀螺惯导系统广泛应用于车载自主定位定向当中。当不存在外部测速设备的条件下,一般采用零速修正(zero velocity update,ZUPT)对导航误差的发散过程进行约束。常规ZUPT导航算法中重力矢量采用正常重力模型计算获得,忽略了重力扰动对导航精度的影响。考虑到车载自主导航系统对定位精度的要求,本文从重力扰动对惯性导航误差的影响机理分析入手,指出重力扰动是影响高精度ZUPT导航精度的最主要误差源之一。设计提出了两种适用于车载应用的重力扰动实时补偿方案,并在重力扰动变化剧烈的山区地带进行了长距离车载试验。试验结果表明,对于同一组跑车数据,导航时间2 h ZUPT间隔10 min,激光陀螺惯导系统的水平定位精度由补偿前的8.93 m提高到了补偿后的3.75 m,高程定位精度由补偿前的1.63 m提高到了补偿后的0.80 m。重力扰动补偿方法具有重要的工程应用价值。  相似文献   

17.
针对一类非线性系统提出了间接自适应模糊控制方法,该方法用模糊逻辑系统逼近未知函数,并设计误差补偿器来减少逼近误差对跟踪精度的影响。在设计等效控制时考虑其存在性,仿真证明该方法不但能使跟踪误差收敛到原点的小邻域内,而且通过适当调整设计参数,可使跟踪误差减小,收敛速度加快。仿真结果验证了此方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号