首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种改进的K-means聚类算法   总被引:1,自引:0,他引:1  
传统的K-means聚类算法对初始聚类中心的依赖程度很大,聚类结果会随聚类中心的选择不同波动很大,为了消除这种中心选择不确定性,提出一种改进的K-means聚类算法,从而有效地改善初始聚类中心点选择的随机性,提高聚类结果的稳定性.仿真实验结果表明,改进后的K-means聚类算法优于传统的算法.  相似文献   

2.
传统-means聚类算法的性能依赖于初始聚类中心的选择.本文将复杂网络节点的属性值作为节点的度、聚集度与聚集系数的加权值,通过计算所有节点的加权综合聚集特征值,选取综合聚集特征值高,并且彼此之间无高聚集性特征的K个节点作为聚类的初始聚类中心,然后进行聚类迭代过程.实验结果表明,新算法对初始聚类中心的选取更迅速有效,避免了传统K-means算法初始聚类节点选取的敏感性,进而提高K-means算法的聚类质量.  相似文献   

3.
王娟 《科技信息》2012,(25):168+229-168,229
聚类算法作为一种重要的数据挖掘的方法,能找到样本中相对集中的区域。本文分析了一些常用聚类算法以及局限性,并且针对K-means算法中初始点的选择,讨论了一种改进的K-means算法的实现过程,以期得到比较理想的聚类效果。  相似文献   

4.
杨莉云  颜远海 《河南科学》2019,37(4):507-513
孤立点的存在使聚类中心的计算产生较大误差,影响K-means算法的聚类效果.针对该问题,引入谢林模型,使孤立点能够自动移动到其邻居所在位置,消除孤立点,同时,对K-means算法过程中的距离计算、初始聚类中心选取环节进行改进,提出基于孤立点自适应的K-means算法.该算法首先对原始数据进行归一化处理,以提高距离计算的准确性;然后,根据谢林模型的基本思想,将孤立点移动到其最近的多邻邻居;接着,由类簇的数目确定邻居样本的搜索范围,确定初始聚类中心;最后,根据移动后的数据集和初始聚类中心,进行K-means聚类.在UCI机器学习数据库中经典聚类数据集上的实验结果表明,该算法可显著提升聚类的精度,同时,簇的内聚性也比较好.  相似文献   

5.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。  相似文献   

6.
针对传统K-means算法在初始质心选取的敏感性以及迭代计算的冗余性这两方面的缺陷,提出一种高效的聚类算法(ECA).根据数据对象的空间分布情况,首先采用空间划分预聚类算法(SDPCA)对数据集实现预聚类划分,然后采用基于邻近簇调整的优化聚类算法(OCANC)对预聚类成果进行优化处理,最终获取聚类成果.实验证明,该改进算法能消除对初始输入的敏感性,以更高的运行效率获取较高质量的聚类结果.  相似文献   

7.
《河南科学》2016,(3):348-351
传统K-means聚类算法中聚类初始中心点是随机确定的,实际聚类数据集中可能有孤立点,造成了每次聚类的结果不同,聚类质量不同,有时陷入局部优化状态.针对这些问题,研究者曾试图用距离法解决孤立点的判断和确定初始聚类中心.这种思路存在不科学性.因为孤立点不仅指远离其他点,同时它的周围点稀疏;另外,当数据量过大、数据特征值过多时,算法的运算量大,需要占用大量的计算机资源,运算速度过慢.对传统的K-means聚类算法进行研究,提出了基于密度参数和距离理论的初始聚类中心的确定和孤立点的判断,对传统的K-means聚类算法进行改进.  相似文献   

8.
K-means聚类算法研究   总被引:1,自引:0,他引:1  
K-means算法作为聚类分析算法,已被广泛地应用到诸多领域。本文研究了K-means算法的基本原理,并将其应用到高校学生入学信息分析中。高考学生入学的相关信息包含了大量重要的学习及其他方面的信息,对这些数据信息进行分析和研究,有助于教师对不同类别的学生进行不同方式的教学,做到因材施教。首先对学生的入学信息数据进行预处理,然后使用K-means算法,对学生信息进行分类评价;最后利用所获得的分类结果指导学生在大学期间的学习方向以及教师对学生的培养工作。  相似文献   

9.
一种基于最大最小距离和SSE的自适应聚类算法   总被引:1,自引:0,他引:1  
K均值聚类是一种常用的聚类算法,需要指定初始中心和簇数,但随意指定初始中心可能导致聚类陷入局部最优解,且实际应用中簇数未必是已知的。针对K均值聚类的不足,文中提出了一个自适应聚类算法,该算法基于数据实例之间的最大最小距离选取初始聚类中心,基于误差平方和(SSE)选择相对最稀疏的簇分裂,并根据SSE变化趋势停止簇分裂从而自动确定簇数。实验结果表明,该算法可以在不增加迭代次数的情况下得到更准确的聚类结果,验证了所提聚类算法是有效的。  相似文献   

10.
图像分割是图像处理中的重要环节,如何提高图像分割的准确度一直以来都是图像领域的研究重点及难点.K-means聚类算法作为经典聚类算法得到广泛应用,但是,k值的选取往往难以确定.针对这一问题,提出了一种改进的K-means算法.首先将输入的彩色图像转化为灰度图像,统计灰度直方图的峰值数,将其设定为聚类数k,然后对原图像的...  相似文献   

11.
K-means初始聚类中心优化算法研究   总被引:1,自引:1,他引:1  
由于K-means算法对初始中心的依赖性而导致聚类结果可能陷入局部极小,而采用密度函数法的多中心 聚类并结合小类合并运算的聚类结果明显优于K-means的聚类结果。该算法的每一次迭代都是倾向于发现超球 面簇,尤其对于延伸状的不规则簇具有良好的聚类能力。  相似文献   

12.
K-means算法是聚类方法中常用的一种划分方法.基于扩展划分的思想,提出了一种基于扩展的K-means聚类算法(EK-means),在一定程度上避免了聚类结果陷入局部解的现象,减少了原始K-means算法因采用误差平方和准则函数而出现将大的聚类簇分割开的情况.该算法使用了基于距离的技术来处理孤立点,引进了一种基于扩展的方法进行聚类.实验表明该算法可扩展性好,能够很好的识别出孤立点或噪声,并且有很好的精度.  相似文献   

13.
介绍K-means聚类算法推导过程,并给出利用Python实现K-means算法的程序,以进行验证.  相似文献   

14.
K—means聚类算法的研究   总被引:5,自引:0,他引:5  
为解决原始K-means算法随机选取初始聚类中心对聚类结果的影响较大的不足,提出了改进算法.采取基于采样选取聚类中心距离的规则,进行多次选择决定最终的初始聚类中心,使得改进后的算法受初始聚类中心选择的影响达到最小;同时,在选取初始聚类中心后,对初值进行数据标准化处理.将改进的K-means算法应用于销售行业,结果显示,改进后的算法比原始的算法在效率上得到了提高.  相似文献   

15.
为解决模糊层次聚类算法无法收敛的问题,提出一种改进的模糊层次聚类算法.算法在分群前先进行数据处理,将特征向量相同的群合并成一个新的群,再使用模糊层次聚类算法分群,最后使用K-means算法将类簇收敛为想要的数量.实验结果表明,本算法具有较好的稳定性和分群效果,聚类质量高.  相似文献   

16.
传统K-means聚类算法通过欧式距离计算样本的相似度,将数据所有的属性特征均平等对待,忽略每个属性特征的不同贡献,导致样本相似度计算的准确率不高.针对这个不足,提出一种特征加权的K-means算法进行优化.首先,运用Softmax和Sigmoid逻辑回归函数计算特征权重,使得加权的欧式距离更能准确地表示样本相似度;其...  相似文献   

17.
K-means算法需要人工设定聚类个数且易受孤立点影响,根据这个缺陷提出了一种新的改进算法。改进算法通过设定初始值及初始值的最大值,在聚类过程中自动获取聚类数k。实验结果表明,该算法在一定程度上缓解了K-means算法对初始值敏感及受孤立点影响的问题,能产生高质量的聚类结果。  相似文献   

18.
基于信息熵改进的 K-means 动态聚类算法   总被引:1,自引:2,他引:1  
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题.因此,提出一个改进的K-means算法.改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果.实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升.  相似文献   

19.
针对原始K-means算法的一系列问题,提出一种基于半监督的K-means聚类改进算法,能够自动进行聚类,找出最优K值,并且最大限度地找出孤立点.首先根据样本集自身的特点,按照"类内尽可能相似"原则一步一步形成数据集,然后对数据集进行"去噪"与合并相似簇,最后,利用少量的标记信息指导和修正聚类结果.在UCI的多个数据集...  相似文献   

20.
原始的k-means算法是从样本点的集合中随机选取K个中心,这种选取具有盲目性和随意性,它在很大程度上决定了算法的有效性.为消除选取初始中心的盲目性,应充分利用已有数据样本点的信息.采取对数据进行预处理的方式来选取初始中心.实验证明新的初始点的选取不仅提高了算法的计算效率,也提高了算法最终确定的聚类的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号