共查询到20条相似文献,搜索用时 15 毫秒
1.
一种基于分类的关联规则Apriori算法 总被引:2,自引:0,他引:2
关联规则的Apriori算法,在频繁项集的过程中要多次扫描数据库,而事务数据库中含有较多的冗余数据,极大地影响了频繁项集的提取效率。针对这些问题,提出一种基于分类的Apriori算法,在频繁项集提取以前,用分类的方法去掉无关冗余数据。实验结果表明这种方法较好地提高了Apriori算法的性能,在实践中有一定的应用价值。 相似文献
2.
数据聚类是一个功能强大的技术,它能够把数据特征相似的对象划分为一类,但是并不是所有的聚类算法的实现都能产生相同的聚类结果;并且K均值算法的结果很大程度上依赖它的初始中心的选择;提出了一种新颖的关于K均值初始中心选择的策略;该算法是基于反向最近邻(RNN)搜索,检索一个给定的数据集,其最近的邻居是一个给定的查询点中的所有点;使用这种方法计算初始聚类中心结果发现是非常接近聚类算法所需的迭代聚类中心;对提出的算法应用到K均值聚类中给予了证明;用几种流行的数据集的实验结果表明了该算法的优点。 相似文献
3.
一种改进的PSO-Means聚类优化算法 总被引:1,自引:0,他引:1
针对粒子群优化算法在线性不可分情况下不能找到合适的聚类初始质心和正确的聚类个数的缺点,提出引入核方法,对基于粒子群算法的K均值聚类(PSO-Means)算法进行改进。利用核方法把数据映射到高维空间,在高维空间中使用粒子群算法找出所应聚的类,最后利用核空间中的聚类算法对数据进行聚类。通过实验,验证了该算法在线性不可分的情况下可以较好的运行,在很大程度上提高了聚类的效果。 相似文献
4.
分析北京地区日降雨量资料,相较于其他降雨事件,大雨或暴雨事件发生的次数较少,因此该地区的降水量预报属于样本不均衡问题。在样本不平衡的情况下,K最近邻(PNN)算法的分类误差率将会大大提高,这也就使传统的基于K最近邻算法的降水量预报方法的应用受到了限制。针对北京地区降水量预报这一样本不均衡问题,应用伪最近邻算法构建了北京市的降水量预报模型。该方法利用北京地区日降雨量资料和美国国家环境预报中心全球格点资料,将降雨量作为类,将美国国家环境预报中心全球格点资料的各种因子场作为天气样本特征,通过决策规则实现最优分类。利用提出的降水预报模型对北京地区2010年6~8月进行了24 h降水预报,实验结果表明,提出的预报方法对于降水等级预报的预报准确率以及晴雨预报的TS评分、正样本概括率和漏报率均优于传统的K最近邻预报方法,该方法具有较好的预报效果。 相似文献
5.
解的稀疏性的丧失——所有的训练样本均作为支持向量,是最小二乘支持向量机的缺点之一,针对导致模型复杂度提高和模型训练、识别速度降低的问题,从数据挖掘和支持向量的几何分布含义两个方面出发,提出了一种新的支持向量预选取算法。一方面对原数据集的每类数据分别进行K均值聚类,将所有的类中心作为原始数据的表征集;另一方面对原数据集用K最近邻方法提取原数据集的边界样本;最后将这两种方法提取的所有样本点的并集作为预选支持向量进行训练和预测。UCI数据库的实验表明:该方法充分融合了K均值和K最近邻预选取算法的优点,能有效的预选取出支持向量,同时保持较高的识别率,而且稀疏效果更稳定,稀疏性能优于经典的迭代剪枝算法。 相似文献
6.
传统的K最近邻算法(KNN)算法可以解决话务分析专家系统中的求解问题,但KNN算法的不足在于K值的确定与执行效率,因此改进K值选取与加权方法,对提高算法运行效率与准确性具有重要意义.本文提出了一种改进K值选取方法及依托频率的权重计算方法,用于实例检索,并采用改进后的实例推理,构建了话务故障专家系统.实验结果表明,改进算法在实例匹配准确性与执行效度上,均优于传统方法. 相似文献
7.
一种改进的K一均值聚类算法 总被引:2,自引:0,他引:2
为了改进K-means聚类算法的不足,把混合粒子群优化算法引入到K-means聚类算法中,重新选取编码方式并构造适应度函数,在此基础上提出了一种改进的K-means聚类算法;通过两个经典数据集的测试,实验结果表明:改进的算法比K-means算法具有更好的全局寻优能力、更快的收敛速度,且其解的精度更高对初始聚类中心的敏感度降低. 相似文献
8.
提出一种基于案例和规则的混合推理机制求解产品概念设计方案.通过案例匹配方式寻求方案设计结果,在相似度达不到要求的情况下转入规则推理进行修正设计.针对案例推理中案例检索的准确度和效率低下等问题,采用粗糙集理论对产品已有的案例库进行处理,得到案例特征属性的真实权重,提高了案例检索准确度;运用层次聚类和K-means聚类相结合的混合聚类算法对案例库中的案例进行聚类并形成索引,提高了案例检索效率.通过摩托车概念设计应用实例验证了该文方法的可行性和有效性. 相似文献
9.
基于一种改进自适应模糊神经技术的PEMFC系统建模和控制 总被引:1,自引:1,他引:1
从质子交换膜燃料电池(PEMFC)实际应用的角度出发,应用自适应模糊神经网络技术对PEMFC系统进行建模与控制.在建模过程中,同时应用实验数据和专家经验对模型进行辨识,使模糊节点具有明确的物理意义和初始参数的选择更加容易.在控制过程中,将训练好的网络模型作为PEMFC控制系统的参考模型,采用自适应神经网络学习算法(ANA)在线对控制器参数进行自适应调整,采用最近邻聚类算法(NCA)对控制器的模糊规则库进行更新.在仿真实验中,将自适应模糊控制算法与PID和传统模糊算法进行比较,结果表明本算法控制性能优良. 相似文献
10.
一种新的最近邻聚类算法 总被引:1,自引:0,他引:1
在分析现有最近邻聚类算法所存在问题的基础上,提出了一种先利用均值规格化的思想来确定算法的初始半径,然后根据启发式规则修改聚类半径的新的最近邻聚类算法.同时,给出了聚类有效性函数对得到的聚类结果进行合理性判断. 相似文献
11.
一种基于改进的RBF神经网络的铁水脱硫预报模型 总被引:7,自引:1,他引:7
脱硫过程是炼钢生产中一个十分重要的环节。脱硫效果的好坏,直接关系到炼钢生产能否保质保量地进行,而这又取决于对脱硫过程的控制,其关键是脱硫剂的加入量。因而必须建立脱硫过程模型,实时和高精度地预报脱硫剂的加入量。而脱硫过程又是一个非常复杂的工艺过程,采用传统的方法建立的模型无法保证稳定和高精度的脱硫效果。笔者提出了一种基于改进的RBF神经网络的铁水脱硫预报模型及其具体设计方法,并在炼钢厂进行了实际投运。结果表明,该模型性能良好,这同时说明了设计方法的有效性和实用性。 相似文献
12.
K均值聚类算法初始质心选择的改进 总被引:3,自引:0,他引:3
聚类分析在信息检索和数据挖掘等领域都有很广泛的应用,K均值聚类算法是一个比较简洁和快速的聚类算法,但是它存在着初始聚类个数必须事先设定以及初始质心的选择也具有随机性等缺陷,造成聚类的结果不是最优的。针对K均值聚类算法中的随机指定初始质心的缺点,提出了基于密度和最近邻相似度的初始质心选择算法,实验显示该算法可以生成质量较高而且较稳定的聚类结果,但是改进的算法需要事先设定最近邻相似度的阈值计算量较大等缺点,还有待改进。 相似文献
13.
研究了双层基于案例推理机制的设计,讨论了基于案例推理的基本原理与方法,研究了基于案例修改的数学模型、修改原则、修改模型的构建、修改的匹配算法,介绍了基于案例推理和基于案例修改的学习与维护过程。 相似文献
14.
针对传统K最近邻(KNN)分类法执行效率低的问题,提出一种改进的K最近邻分类法。先采用最短距离聚类法分别对训练样本和测试样本进行聚类,生成一些小簇和孤立点,再对小簇或孤立点使用改进的K最近邻方法进行分类。改进后的方法能极大地缩小分类样本的规模,降低计算成本,提高分类效率。 相似文献
15.
基于案例推理中案例表示的研究 总被引:1,自引:0,他引:1
基于案例推理利用过去的案例或经验进行推理来求解新问题,是一种重要的机器学习方法.在CBR(Case-based Reason ing)中知识表示以案例表示为基础,案例是一段带有上下文信息的知识,该知识表达了推理机在达到其目标的过程中能起关键作用的经验.案例表示可能是半结构化或非结构化的,甚至用自然语言来表达的,涉及系统的运行效率.分析了目前的多种表示方法,研究了不同环境下的案例表示,以及选用合适的方法来构筑的案例库. 相似文献
16.
为了提高粒子群优化算法的局部搜索能力、算法的收敛速度和解的精度,提出了一种改进的混合粒子群优化算法。采用聚类方法和混沌初始化、同时引入线性组合式局部搜索过程,通过四个标准函数的测试实验,与标准粒子群优化算法、混沌粒子群优化算法进行比较分析,提出的算法寻找全局最优解的能力有显著的提高,算法收敛速度和解的精度均优于其它参与比较的算法。 相似文献
17.
针对大型旋转机械结构复杂,故障现象难以用结构化知识表示,故障诊断规则难以提炼的特点,将基于案例推理(CBR)方法应用于旋转机械故障诊断。从旋转机械故障诊断的需求出发,在分析旋转机械故障诊断知识特点的基础上,对故障诊断系统的总体结构、故障案例库的构建、案例相似度匹配、案例调整和学习等CBR方法的关键技术进行了研究。重点设计了故障案例表示方法,采用基于三标度的层次分析法(AHP)确定案例征兆权值。提出了改进的最近邻法计算案例相似度,可以从征兆名称、征兆值、权值三方面对案例进行精确匹配。提出了基于案例审核的学习机制,可以充分发挥不同人员的作用。开发了基于CBR的旋转机械故障诊断系统原型,并给出了应用实例。 相似文献
18.
一种提高文本聚类算法质量的方法 总被引:1,自引:0,他引:1
冯少荣 《同济大学学报(自然科学版)》2008,36(12)
针对基于VSM(vector space model)的文本聚类算法存在的主要问题,即忽略了词之间的语义信息、忽略了各维度之间的联系而导致文本的相似度计算不够精确,提出基于语义距离计算文档间相似度及两阶段聚类方案来提高文本聚类算法的质量.首先,从语义上分析文档,采用最近邻算法进行第一次聚类;其次,根据相似度权重,对类特征词进行优胜劣汰;然后进行类合并;最后,进行第二次聚类,解决最近邻算法对输入次序敏感的问题.实验结果表明,提出的方法在聚类精度和召回率上均有显著的提高,较好解决了基于VSM的文本聚类算法存在的问题. 相似文献
19.
基于案例推理的信息系统构建方法研究 总被引:4,自引:0,他引:4
提出一种构建信息系统的基本案例推理的方法及实现技术,为信息系统的方案设计提供一个有关的支持,在案例库的支持下,运用基于案例的推理方法快速实现系统设计方案,提出的方法能有效支持以网络结构设计为主的信息系统方案设计。 相似文献
20.
K最近邻算法(KNN)被认为是向量空间模型下最好的分类算法之一,在准确率和召回率方面比较出众,但随着样本数量的增加其相似度计算开销很大。本文提出一种改进算法RS-KNN,主要是利用粗糙集的相关理论,计算训练样本集中各样本子类的上近似空间和下近似空间,根据待分类文本出现在不同的近似空间,以缩减与待分类样本计算相似度的训练样本个数。实验表明此算法能够有效地降低分类计算开销。 相似文献