首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
针对化工过程的变量数据维数高、非线性的问题,提出基于邻域保持嵌入(NPE)-主多项式分析(PPA)的过程故障检测算法.应用NPE算法提取高维数据的低维子流形,能够解决传统的线性降维算法不能提取局部结构信息的问题,对维数进行约减.利用PPA法时,使用一组灵活的主多项式分量来描述数据,能够有效地捕捉过程数据中固有的非线性结...  相似文献   

2.
现有流形学习算法在学习人脸数据时,假设所有数据点位于单一低维嵌入流形之上,当数据点实际分布在不同的流形上时,单流形假设就会影响数据真实空间结构。为此提出一种基于多邻域保持嵌入(multiple neighborhood preserving embedding,M-NPE)的学习算法来发现不同类别数据在不同维度的低维嵌入空间中分布的多流形结构。首先,单独学习不同类别数据的流形,得到反映其本质特征的流形;再通过遗传算法搜索每个流形的最优维数;最后依据最小重构误差分类器对样本分类。在Extended Yale B和CMU PIE这2个大型人脸库上实验结果验证了该算法的有效性。  相似文献   

3.
针对间歇过程数据的多模态与动态特性共存带来的故障检测问题,提出一种基于加权双近邻标准化(WDNS)的稀疏加权邻域保持嵌入(SWNPE)算法.首先,在寻找样本双层近邻的基础上加权得到加权双近邻集,用加权双近邻集信息标准化样本,将多模态数据处理为单一模态分布,消除多模态中心点差异,解决多模态特性;然后,考虑到NPE算法不能...  相似文献   

4.
针对间歇过程数据存在的非线性和动态特性导致故障检测效果不佳的问题,提出一种基于滑动窗(sliding window,SW)的多向差分正交邻域保持嵌入(multiway differential orthogonal neighborhood preserving embedded,MDONPE)算法.首先对间歇过程数据...  相似文献   

5.
为充分利用表征过程运行工况的数据特征信息,提高化工过程的故障检测性能,提出一种基于动态结构保持主元分析(DSPPCA)的过程故障检测方法。首先对原始数据采用变量相关性分析建立自回归模型,构建包含动态特征的数据集,进一步综合考虑主元分析法(PCA)和局部线性嵌入(LLE)流形学习算法中数据点之间的近邻关系,融合得出新的目标函数,同时,运用局部线性回归的方法获得高维样本的嵌入映射,特征提取后在特征空间和残差空间分别构造监控统计量进行故障检测。Swiss-roll数据集的降维结果及TE过程的仿真研究结果表明,DSPPCA算法可以取得较好的特征提取效果,具有较高的故障检测性能。  相似文献   

6.
基于保持近邻判别嵌入的人脸识别   总被引:1,自引:0,他引:1  
保持近邻嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构的属性.虽然NPE已在一些领域得到应用,但解决识别任务还有局限性.为改进NPE的识别性能,提出了一种保持近邻判别嵌入(NPDE)人脸识别方法. 在NPDE算法中,有效结合了LDA和NPE的思想,具有很强的判别力,还能根据先验类标签信息保持局部邻域的固有几何关系.在ORL人脸库以及Yale人脸数据库上的实验结果表明提出的方法是有效的.  相似文献   

7.
针对传统邻域选择方法不能根据流形样本密度和弯曲度合理选择邻域的缺点,提出了一种有序自适应的邻域选择算法.该算法从流形上曲率最小的点开始,以宽度优先的次序不断地处理每个点.对搜索到的数据点,基于流形结构的局部线性特性,利用已有的邻域信息估算其局部切空间,然后通过其邻域边在切空间的投影自适应地选择合适的邻域.实验结果表明:该算法应用于Isomap后,对不同结构的数据集嵌入结果更准确.  相似文献   

8.
提高人脸识别算法的识别率,提出一种基于半监督局部线性嵌入(Semi-Supervised Locally Linear Embedding,SSLLE)的人脸图像识别方法。针对局部线性嵌入(Locally Linear Embedding,LLE)算法非监督学习的缺陷,引入半监督思想,在构造邻域的时候利用部分样本的标签信息来重新调整距离矩阵;使用调整后的距离矩阵进行线性重建从而实现数据降维。在Yale和ORL人脸库上的实验结果表明,能有效的提高人脸识别的性能。  相似文献   

9.
基于等距离映射的非线性动态故障检测方法   总被引:2,自引:0,他引:2  
针对化工过程数据强非线性和动态性的特点,提出了一种基于动态等距离映射(Dynamic Isometric Mapping,DISOMAP)流形学习的非线性过程故障检测方法.该方法首先采用DISOMAP算法提取训练样本的子流形特征,自适应学习近邻点参数,保留了采样数据的流形结构,然后运用线性回归方法得到原空间和降维子流形空间的投影映射,从而将观测数据从原高维空间映射到低维嵌入空间,最后在变换后的低维空间构造统计量T2和SPE进行监控.TE过程的仿真结果表明,所提出的DISOMAP故障检测方法可以比核主元分析(Kernel Principle Component Analysis,KPCA)更为有效地监控过程变化,检测到故障的发生.  相似文献   

10.
为发现高压电缆异常状态并及时地发出异常告警,提出了一种基于邻域保持嵌入(neighborhood preserving embedding,NPE)和主成分分析(principal component analysis,PCA)的高压电缆异常状态检测方法。针对PCA只能保留数据全局结构信息的缺陷,提出将流形学习算法NPE与PCA结合,从而实现数据全局和局部特征信息的全方面提取;然后利用T2和SPE统计量作为电缆状态特征量,其控制限作为状态异常阈值判据,并推导出不同异常状态特征指标的贡献度,确定高压电缆主要异常指标;接着通过计算高压电缆各分段统计量的值,确定电缆异常区域;最后利用广东珠海供电局辖区内220 k V高压电缆统计资料验证所提策略的正确性。  相似文献   

11.
小世界邻域优化的局部线性嵌入算法   总被引:1,自引:0,他引:1  
通过分析稀疏数据或噪声数据,导出局部线性嵌入(LLE)算法出现失效的原因,由此提出了一种基于小世界邻域优化的局部线性嵌入(SLLE)算法.将复杂网络算法引入到流形学习中,利用小世界算法对LLE算法进行数据优化,并以最短路径和局部集群系数作为局部优化参数,解决了数据点不规则时以欧氏空间作为邻域判别标准在构建局部超平面造成嵌入结果扭曲的难题.通过3组标准测试数据集合比较了SLLE、LLE算法,结果表明SLLE算法的计算效果、鲁棒性、非理想数据的降维结果均优于LLE算法,且计算正确率至少提高10%.  相似文献   

12.
针对降维算法局部线性嵌入算法LLE(Local Linear Embedding)未能充分保留高维数据中邻域之间的结构的问题,提出了一种新的融合邻域分布属性的局部线性嵌入算法。该算法通过计算每个样本数据的邻域分布以及KL(Kullback-Leibler)散度度量不同邻域点与其中心样本各自的近邻分布差异,并利用其差值优化重构的权重系数,从而获得更精确的低维电机数据。通过可视化、 Fisher测量和识别精度3个评价结果验证了该算法挖掘电机轴承检测数据高维结构的有效性。  相似文献   

13.
针对多模态过程数据密度不规则性提出的一类基于密度的方法,大多是以欧式距离为基础来比较彼此间的相似性,从而检测过程是否发生故障。然而多模态数据密度在较小范围内变化较大,采用欧式距离很难获得全面的数据信息。本文提出了一种新的基于加权距离选择邻居的策略,该策略首先对距离进行合理的加权,再根据新的加权距离重新选择样本点的邻居,能有效地避免数据信息不全面的问题。在仿真实验中,首先通过比较基于传统的欧式距离和基于本文加权距离选取的邻居,说明本文策略的优越性;进而将该策略与局部离群因子(Local Outlier Factor,LOF)结合用于TE过程,对TE过程的仿真结果表明该策略在应用于基于密度的检测方法上获得了的良好效果。  相似文献   

14.
针对在工业过程中数据普遍存在的非线性特性,基于数据的局部相关关系对分类的影响,提出一种基于t分布随机邻域嵌入(t-SNE)的数据特征提取和故障分类方法。利用t-SNE算法非线性、非参数降维的优势,与费舍判别分析(FDA)、支持向量机(SVM)分类器相结合建立故障分类模型。利用t-SNE算法对故障数据进行非线性特征提取,获取数据的关键区分特征。用FDA和SVM算法实现故障分类和识别。通过田纳西-伊士曼(TE)过程获得的实验数据进行实验仿真分析,并分别与基于核主元分析法(KPCA)、拉普拉斯特征映射(LE)构建的KPCA-FDA、LE-FDA、KPCA-SVM、LE-SVM 4种故障分类模型进行比较。定量评估结果表明:即使基于不同分类器,相较于其他2种方法,该文方法的分类准确率分别提升了2%和7%,且其平均分类准确率能保持在97%以上。  相似文献   

15.
视频轨迹为视频图像的自动化分析提供了新的工具.为此,提出了基于时空扩展局部线性嵌入的视频轨迹描绘算法.该算法首先将视频片段分割成连续的视频子序列,利用视频子序列的非平凡k近邻来捕获具有时空约束的相似视频序列模式;然后在每个视频子序列与其非平凡k近邻之间构造重构权;最后利用重构权计算视频子序列的低维嵌入向量,从而获得视频...  相似文献   

16.
深入探讨了流形学习算法中的局部线性嵌入算法(Locally Linear Embedding,简称LLE),在此基础上提出有监督学习的LLE算法,并把它应用于人脸表情识别中,只需构造简单的最小距离分类器,就能取得较好的识别率.  相似文献   

17.
核局部线性嵌入法是一个优异的流形学习方法,对于非线性高维数据的降维问题,具有较好的效果。但是算法本身是一个无监督学习方法,对于模式分类等有监督学习问题效果不是很好。通过分析监督学习问题的机理,提出了一种有监督的核函数局部线性嵌入算法,数值实验证明算法对于有监督学习问题,具有较好的效果。  相似文献   

18.
为了有效地利用双树-复小波变换(DT-CWT)进行人脸识别,提出一种将DT-CWT与正交邻域保持投射(ONPP)相结合的方法.先通过DT-CWT得到具有空间、频率以及方向特征的人脸特征表示,然后使用ONPP对特征向量进行线性降维,有效地保持了数据的局部与全局的几何特征,最后进行识别测试.实验结果表明,基于DT-CWT的ONPP算法可以在特征维数有效降低的前提下很好地完成人脸识别任务.  相似文献   

19.
到现在为止,基于邻域嵌入法(NE)的图像超分辨(SR)技术都采用两个独立的步骤合成高分辨的图像。首先以Eu-clidean距离作为标准进行邻域搜索,然后通过求解一个约束最小均方问题得到最优的加权值。然而,采用两个独立的过程并不是最优的。提出一种基于稀疏邻域选择的图像超分辨算法。首先确定可能的邻域范围,然后采用稳健SL0算法同时找出邻域和加权值。由于采用聚类方法,用于重建的k个最近邻域(k-NN)具有相似的局部几何结构,可以采用一种叫做方向梯度直方图(HoG)的统计方法对低分辨图像块进行聚类。通过在合成过程中利用HoG的局部结构信息,每幅低分辨图像的k-NN都能从相对应的子集中自适应的选择,从而在保证合成图像质量的前提下大大提高了合成高分辨图像的速度。仿真表明本文算法能够得到与传统方法相似的结果。  相似文献   

20.
为了更好地预处理未标记数据,大多数基于图正则的无监督特征选择算法通过构造样本的相似性矩阵来删除冗余信息并选择具有代表性的特征子集.这些方法中的大多数图都是用固定数量的近邻数来初始化,忽略了数据分布不均匀的问题.为了解决这个问题,提出了一种基于自适应邻域和自表示正则的无监督特征选择算法(Adaptive neighbor...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号