首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Human DNA polymerase eta (Pol eta) modulates susceptibility to skin cancer by promoting DNA synthesis past sunlight-induced cyclobutane pyrimidine dimers that escape nucleotide excision repair (NER). Here we have determined the efficiency and fidelity of dimer bypass. We show that Pol eta copies thymine dimers and the flanking bases with higher processivity than it copies undamaged DNA, and then switches to less processive synthesis. This ability of Pol eta to sense the dimer location as synthesis proceeds may facilitate polymerase switching before and after lesion bypass. Pol eta bypasses a dimer with low fidelity and with higher error rates at the 3' thymine than at the 5' thymine. A similar bias is seen with Sulfolobus solfataricus DNA polymerase 4, which forms a Watson-Crick base pair at the 3' thymine of a dimer but a Hoogsteen base pair at the 5' thymine (ref. 3). Ultraviolet-induced mutagenesis is also higher at the 3' base of dipyrimidine sequences. Thus, in normal people and particularly in individuals with NER-defective xeroderma pigmentosum who accumulate dimers, errors made by Pol eta during dimer bypass could contribute to mutagenesis and skin cancer.  相似文献   

2.
K K Hamilton  P M Kim  P W Doetsch 《Nature》1992,356(6371):725-728
Cyclobutane pyrimidine dimers (CPDs) are the predominant product of photodamage in DNA after exposure of cells to ultraviolet light and are cytotoxic, mutagenic and carcinogenic in a variety of cellular and animal systems. In prokaryotes, enzymes and protein complexes have been characterized that remove or reverse CPDs in DNA. Micrococcus luteus and T4 phage-infected Escherichia coli contain a specific N-glycosylase/apurinic-apyrimidinic lyase that catalyses a two-step DNA incision process at sites of CPDs, thus initiating base excision repair of these lesions. It is well established that CPDs are recognized and removed from eukaryotic DNA by excision repair processes but very little information exists concerning the nature of the proteins involved in CPD recognition and DNA incision events. We report here that an enzyme functionally similar to the prokaryotic N-glycosylase/apurinic-apyrimidinic lyases exists in Saccharomyces cerevisiae. To our knowledge, this is the first time such an activity has been found in a eukaryote and is also the first example of an organism having both direct reversal and base excision repair pathways for the removal of CPDs from DNA.  相似文献   

3.
Nair DT  Johnson RE  Prakash S  Prakash L  Aggarwal AK 《Nature》2004,430(6997):377-380
Almost all DNA polymerases show a strong preference for incorporating the nucleotide that forms the correct Watson-Crick base pair with the template base. In addition, the catalytic efficiencies with which any given polymerase forms the four possible correct base pairs are roughly the same. Human DNA polymerase-iota (hPoliota), a member of the Y family of DNA polymerases, is an exception to these rules. hPoliota incorporates the correct nucleotide opposite a template adenine with a several hundred to several thousand fold greater efficiency than it incorporates the correct nucleotide opposite a template thymine, whereas its efficiency for correct nucleotide incorporation opposite a template guanine or cytosine is intermediate between these two extremes. Here we present the crystal structure of hPoliota bound to a template primer and an incoming nucleotide. The structure reveals a polymerase that is 'specialized' for Hoogsteen base-pairing, whereby the templating base is driven to the syn conformation. Hoogsteen base-pairing offers a basis for the varied efficiencies and fidelities of hPoliota opposite different template bases, and it provides an elegant mechanism for promoting replication through minor-groove purine adducts that interfere with replication.  相似文献   

4.
Pham P  Bertram JG  O'Donnell M  Woodgate R  Goodman MF 《Nature》2001,409(6818):366-370
The UmuD'2C protein complex (Escherichia coli pol V) is a low-fidelity DNA polymerase (pol) that copies damaged DNA in the presence of RecA, single-stranded-DNA binding protein (SSB) and the beta,gamma-processivity complex of E. coli pol III (ref. 4). Here we propose a model to explain SOS-lesion-targeted mutagenesis, assigning specific biochemical functions for each protein during translesion synthesis. (SOS lesion-targeted mutagenesis occurs when pol V is induced as part of the SOS response to DNA damage and incorrectly incorporates nucleotides opposite template lesions.) Pol V plus SSB catalyses RecA filament disassembly in the 3' to 5' direction on the template, ahead of the polymerase, in a reaction that does not involve ATP hydrolysis. Concurrent ATP-hydrolysis-driven filament disassembly in the 5' to 3' direction results in a bidirectional stripping of RecA from the template strand. The bidirectional collapse of the RecA filament restricts DNA synthesis by pol V to template sites that are proximal to the lesion, thereby minimizing the occurrence of untargeted mutations at undamaged template sites.  相似文献   

5.
T J Matray  E T Kool 《Nature》1999,399(6737):704-708
In most models of DNA replication, Watson-Crick hydrogen bonding drives the incorporation of nucleotides into the new strand of DNA and maintains the complementarity of bases with the template strand. Studies with nonpolar analogues of thymine and adenine, however, have shown that replication is still efficient in the absence of hydrogen bonds. The replication of base pairs might also be influenced by steric exclusion, whereby inserted nucleotides need to be the correct size and shape to fit the active site against a template base. A simple steric-exclusion model may not require Watson-Crick hydrogen bonding to explain the fidelity of replication, nor should canonical purine and pyrimidine shapes be necessary for enzymatic synthesis of a base pair if each can fit into the DNA double helix without steric strain. Here we test this idea by using a pyrene nucleoside triphosphate (dPTP) in which the fluorescent 'base' is nearly as large as an entire Watson-Crick base pair. We show that the non-hydrogen-bonding dPTP is efficiently and specifically inserted by DNA polymerases opposite sites that lack DNA bases. The efficiency of this process approaches that of a natural base pair and the specificity is 10(2)-10(4)-fold. We use these properties to sequence abasic lesions in DNA, which are a common form of DNA damage in vivo. In addition to their application in identifying such genetic lesions, our results show that neither hydrogen bonds nor purine and pyrimidine structures are required to form a base pair with high efficiency and selectivity. These findings confirm that steric complementarity is an important factor in the fidelity of DNA synthesis.  相似文献   

6.
Specialized DNA polymerases (DNA pols) are required for lesion bypass in human cells. Auxiliary factors have an important, but so far poorly understood, role. Here we analyse the effects of human proliferating cell nuclear antigen (PCNA) and replication protein A (RP-A) on six different human DNA pols--belonging to the B, Y and X classes--during in vitro bypass of different lesions. The mutagenic lesion 8-oxo-guanine (8-oxo-G) has high miscoding potential. A major and specific effect was found for 8-oxo-G bypass with DNA pols lambda and eta. PCNA and RP-A allowed correct incorporation of dCTP opposite a 8-oxo-G template 1,200-fold more efficiently than the incorrect dATP by DNA pol lambda, and 68-fold by DNA pol eta, respectively. Experiments with DNA-pol-lambda-null cell extracts suggested an important role for DNA pol lambda. On the other hand, DNA pol iota, together with DNA pols alpha, delta and beta, showed a much lower correct bypass efficiency. Our findings show the existence of an accurate mechanism to reduce the deleterious consequences of oxidative damage and, in addition, point to an important role for PCNA and RP-A in determining a functional hierarchy among different DNA pols in lesion bypass.  相似文献   

7.
W N Hunter  T Brown  N N Anand  O Kennard 《Nature》1986,320(6062):552-555
Mutational pathways rely on introducing changes in the DNA double helix. This may be achieved by the incorporation of a noncomplementary base on replication or during genetic recombination, leading to substitution mutation. In vivo studies have shown that most combinations of base-pair mismatches can be accommodated in the DNA double helix, albeit with varying efficiencies. Fidelity of replication requires the recognition and excision of mismatched bases by proofreading enzymes and post-replicative mismatch repair systems. Rates of excision vary with the type of mismatch and there is some evidence that these are influenced by the nature of the neighbouring sequences. However, there is little experimental information about the molecular structure of mismatches and their effect on the DNA double helix. We have recently determined the crystal structures of several DNA fragments with guanine X thymine and adenine X guanine mismatches in a full turn of a B-DNA helix and now report the nature of the base pairing between adenine and cytosine in an isomorphous fragment. The base pair found in the present study is novel and we believe has not previously been demonstrated. Our results suggest that the enzymatic recognition of mismatches is likely to occur at the level of the base pairs and that the efficiency of repair can be correlated with structural features.  相似文献   

8.
Min JH  Pavletich NP 《Nature》2007,449(7162):570-575
Mutations in the nucleotide excision repair (NER) pathway can cause the xeroderma pigmentosum skin cancer predisposition syndrome. NER lesions are limited to one DNA strand, but otherwise they are chemically and structurally diverse, being caused by a wide variety of genotoxic chemicals and ultraviolet radiation. The xeroderma pigmentosum C (XPC) protein has a central role in initiating global-genome NER by recognizing the lesion and recruiting downstream factors. Here we present the crystal structure of the yeast XPC orthologue Rad4 bound to DNA containing a cyclobutane pyrimidine dimer (CPD) lesion. The structure shows that Rad4 inserts a beta-hairpin through the DNA duplex, causing the two damaged base pairs to flip out of the double helix. The expelled nucleotides of the undamaged strand are recognized by Rad4, whereas the two CPD-linked nucleotides become disordered. These findings indicate that the lesions recognized by Rad4/XPC thermodynamically destabilize the Watson-Crick double helix in a manner that facilitates the flipping-out of two base pairs.  相似文献   

9.
Studies of the crystal structures of more than 30 synthetic DNA fragments have provided structural information about three basic forms of the double helix: A-, B- and Z-form DNA. These studies have demonstrated that the DNA double helix adopts a highly variable structure which is related to its base sequence. The extent to which such observed structures are influenced by the crystalline environment can be found by studying the same molecule in different crystalline forms. We have recently crystallized one particular oligomer in various crystal forms. Here we report the results of structural analyses of the different crystal structures and demonstrate that the DNA double helix can adopt a range of conformations in the crystalline state depending on hydration, molecular packing and temperature. These results have implications on our understanding of the influence of the environment on DNA structure, and on the modes of DNA recognition by proteins.  相似文献   

10.
Parker JS  Roe SM  Barford D 《Nature》2005,434(7033):663-666
RNA interference and related RNA silencing phenomena use short antisense guide RNA molecules to repress the expression of target genes. Argonaute proteins, containing amino-terminal PAZ (for PIWI/Argonaute/Zwille) domains and carboxy-terminal PIWI domains, are core components of these mechanisms. Here we show the crystal structure of a Piwi protein from Archaeoglobus fulgidus (AfPiwi) in complex with a small interfering RNA (siRNA)-like duplex, which mimics the 5' end of a guide RNA strand bound to an overhanging target messenger RNA. The structure contains a highly conserved metal-binding site that anchors the 5' nucleotide of the guide RNA. The first base pair of the duplex is unwound, separating the 5' nucleotide of the guide from the complementary nucleotide on the target strand, which exits with the 3' overhang through a short channel. The remaining base-paired nucleotides assume an A-form helix, accommodated within a channel in the PIWI domain, which can be extended to place the scissile phosphate of the target strand adjacent to the putative slicer catalytic site. This study provides insights into mechanisms of target mRNA recognition and cleavage by an Argonaute-siRNA guide complex.  相似文献   

11.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta.   总被引:28,自引:0,他引:28  
C Masutani  R Kusumoto  A Yamada  N Dohmae  M Yokoi  M Yuasa  M Araki  S Iwai  K Takio  F Hanaoka 《Nature》1999,399(6737):700-704
Xeroderma pigmentosum variant (XP-V) is an inherited disorder which is associated with increased incidence of sunlight-induced skin cancers. Unlike other xeroderma pigmentosum cells (belonging to groups XP-A to XP-G), XP-V cells carry out normal nucleotide-excision repair processes but are defective in their replication of ultraviolet-damaged DNA. It has been suspected for some time that the XPV gene encodes a protein that is involved in trans-lesion DNA synthesis, but the gene product has never been isolated. Using an improved cell-free assay for trans-lesion DNA synthesis, we have recently isolated a DNA polymerase from HeLa cells that continues replication on damaged DNA by bypassing ultraviolet-induced thymine dimers in XP-V cell extracts. Here we show that this polymerase is a human homologue of the yeast Rad30 protein, recently identified as DNA polymerase eta. This polymerase and yeast Rad30 are members of a family of damage-bypass replication proteins which comprises the Escherichia coli proteins UmuC and DinB and the yeast Rev1 protein. We found that all XP-V cells examined carry mutations in their DNA polymerase eta gene. Recombinant human DNA polymerase eta corrects the inability of XP-V cell extracts to carry out DNA replication by bypassing thymine dimers on damaged DNA. Together, these results indicate that DNA polymerase eta could be the XPV gene product.  相似文献   

12.
Somatic hypermutation of immunoglobulin genes is a unique, targeted, adaptive process. While B cells are engaged in germinal centres in T-dependent responses, single base substitutions are introduced in the expressed Vh/Vl genes to allow the selection of mutants with a higher affinity for the immunizing antigen. Almost every possible DNA transaction has been proposed to explain this process, but each of these models includes an error-prone DNA synthesis step that introduces the mutations. The Y family of DNA polymerases--pol eta, pol iota, pol kappa and rev1--are specialized for copying DNA lesions and have high rates of error when copying a normal DNA template. By performing gene inactivation in a Burkitt's lymphoma cell line inducible for hypermutation, we show here that somatic hypermutation is dependent on DNA polymerase iota.  相似文献   

13.
S R Holbrook  C Cheong  I Tinoco  S H Kim 《Nature》1991,353(6344):579-581
The crystal structure of the RNA dodecamer duplex (r-GGACUUCGGUCC)2 has been determined. The dodecamers stack end-to-end in the crystal, simulating infinite A-form helices with only a break in the phosphodiester chain. These infinite helices are held together in the crystal by hydrogen bonding between ribose hydroxyl groups and a variety of donors and acceptors. The four noncomplementary nucleotides in the middle of the sequence did not form an internal loop, but rather a highly regular double-helix incorporating the non-Watson-Crick base pairs, G.U and U.C. This is the first direct observation of a U.C (or T.C) base pair in a crystal structure. The U.C pairs each form only a single base-base hydrogen bond, but are stabilized by a water molecule which bridges between the ring nitrogens and by four waters in the major groove which link the bases and phosphates. The lack of distortion introduced in the double helix by the U.C mismatch may explain its low efficiency of repair in DNA. The G.U wobble pair is also stabilized by a minor-groove water which bridges between the unpaired guanine amino and the ribose hydroxyl of the uracil. This structure emphasizes the importance of specific hydrogen bonding between not only the nucleotide bases, but also the ribose hydroxyls, phosphate oxygens and tightly bound waters in stabilization of the intramolecular and intermolecular structures of double helical RNA.  相似文献   

14.
15.
Nuclear magnetic resonance is a technique which permits direct observation of the Waton--Click hydrogen-bonded ring imino protons (guanine N1H and thymine N3H). As the formation and disruption of hydrogen bonds of double-helical RNA and DNA structures are key events during various biological processes, NMR thus provides a useful tool for studying the fluctuational mobility of the individual base pairs. Indeed, several NMR studies of oligo- and polynucleotides have been carried out to probe the structure and dynamics of nucleic acids in solution (for a review see ref. 1). The present study constitutes the first part of our attempt to assess the influence of non-complementary base pairs on the stability of nucleic acid double helices. We report the spectral assignment and temperature-dependent NMR profiles of the hydrogen-bonded imino protons of the two DNA fragments shown in Fig. 1. The assignment is based solely on experimental grounds using the principle of chemical modification. It will be demonstrated that the introduction of a non-complementary (wobble) base pair in a DNA duplex introduces an extra melting site in addition to the sequential melting which starts with the terminal base pairs in the double helix structure.  相似文献   

16.
17.
Weichenrieder O  Wild K  Strub K  Cusack S 《Nature》2000,408(6809):167-173
The Alu domain of the mammalian signal recognition particle (SRP) comprises the heterodimer of proteins SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. It retards the ribosomal elongation of signal-peptide-containing proteins before their engagement with the translocation machinery in the endoplasmic reticulum. Here we report two crystal structures of the heterodimer SRP9/14 bound either to the 5' domain or to a construct containing both 5' and 3' domains. We present a model of the complete Alu domain that is consistent with extensive biochemical data. SRP9/14 binds strongly to the conserved core of the 5' domain, which forms a U-turn connecting two helical stacks. Reversible docking of the more weakly bound 3' domain might be functionally important in the mechanism of translational regulation. The Alu domain structure is probably conserved in other cytoplasmic ribonucleoprotein particles and retroposition intermediates containing SRP9/14-bound RNAs transcribed from Alu repeats or related elements in genomic DNA.  相似文献   

18.
Tang M  Pham P  Shen X  Taylor JS  O'Donnell M  Woodgate R  Goodman MF 《Nature》2000,404(6781):1014-1018
The expression of the Escherichia coli DNA polymerases pol V (UmuD'2C complex) and pol IV (DinB) increases in response to DNA damage. The induction of pol V is accompanied by a substantial increase in mutations targeted at DNA template lesions in a process called SOS-induced error-prone repair. Here we show that the common DNA template lesions, TT (6-4) photoproducts, TT cis-syn photodimers and abasic sites, are efficiently bypassed within 30 seconds by pol V in the presence of activated RecA protein (RecA*), single-stranded binding protein (SSB) and pol III's processivity beta,gamma-complex. There is no detectable bypass by either pol IV or pol III on this time scale. A mutagenic 'signature' for pol V is its incorporation of guanine opposite the 3'-thymine of a TT (6-4) photoproduct, in agreement with mutational spectra. In contrast, pol III and pol IV incorporate adenine almost exclusively. When copying undamaged DNA, pol V exhibits low fidelity with error rates of around 10(-3) to 10(-4), with pol IV being 5- to 10-fold more accurate. The effects of RecA protein on pol V, and beta,gamma-complex on pol IV, cause a 15,000- and 3,000-fold increase in DNA synthesis efficiency, respectively. However, both polymerases exhibit low processivity, adding 6 to 8 nucleotides before dissociating. Lesion bypass by pol V does not require beta,gamma-complex in the presence of non-hydrolysable ATPgammaS, indicating that an intact RecA filament may be required for translesion synthesis.  相似文献   

19.
Biertümpfel C  Yang W  Suck D 《Nature》2007,449(7162):616-620
Holliday proposed a four-way DNA junction as an intermediate in homologous recombination, and such Holliday junctions have since been identified as a central component in DNA recombination and repair. Phage T4 endonuclease VII (endo VII) was the first enzyme shown to resolve Holliday junctions into duplex DNAs by introducing symmetrical nicks in equivalent strands. Several Holliday junction resolvases have since been characterized, but an atomic structure of a resolvase complex with a Holliday junction remained elusive. Here we report the crystal structure of an inactive T4 endo VII(N62D) complexed with an immobile four-way junction with alternating arm lengths of 10 and 14 base pairs. The junction is a hybrid of the conventional square-planar and stacked-X conformation. Endo VII protrudes into the junction point from the minor groove side, opening it to a 14 A x 32 A parallelogram. This interaction interrupts the coaxial stacking, yet every base pair surrounding the junction remains intact. Additional interactions involve the positively charged protein and DNA phosphate backbones. Each scissile phosphate that is two base pairs from the crossover interacts with a Mg2+ ion in the active site. The similar overall shape and surface charge potential of the Holliday junction resolvases endo VII, RuvC, Ydc2, Hjc and RecU, despite having different folds, active site composition and DNA sequence preference, suggest a conserved binding mode for Holliday junctions.  相似文献   

20.
Wang J 《Nature》2005,437(7057):E6-7; discussion E7
Human polymerase-iota belongs to the error-prone Y family of polymerases, which frequently incorporate incorrect nucleotides during DNA replication but can efficiently bypass DNA lesions. On the basis of X-ray diffraction data, Nair et al. propose that Hoogsteen base-pairing is adopted by DNA during its replication by this enzyme. Here I re-examine their X-ray data and find that the electron density is very weak for a Hoogsteen base pair formed between a template adenine deoxyribonucleotide in the syn conformation and a deoxythymidine 5'-triphosphate (dTTP), and that the fit is better for a normal Watson-Crick base pair. As a guanine-cytosine (G-C) base pair has no potential to form a Hoogsteen base pair at physiological pH, Hoogsteen base-pairing is unlikely to be used in replication by this polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号