首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为满足某SUV车型的节能和轻量化需求,对某SUV车型拖曳臂进行静力学分析,然后进行轻量化设计。主要方法是利用高强度钢材替换低强度的钢材,然后利用Hyperworks进行尺寸优化。研究表明,在保证拖曳臂强度和刚度的同时,其总质量减轻19.24%,为有效降低质量和材料用量提供了良好的参考。  相似文献   

2.
轻钢结构相比于传统的钢结构更轻,它由基础体系、承重体系、支撑体系、楼盖体系、维护结构等部分组成,在设计时尤其要注意其轻量化设计.  相似文献   

3.
轻量化是实现汽车节能减排的重要途径,已成为汽车行业重要技术发展方向.本文从车身结构的持续优化调整、车身部件的改良、车体结构技术三方面,建立了车身轻量化设计体系流程,并开发了CAE仿真和试验测试相结合的轻量化节油效果和碰撞安全性验证方法.结果表明,基于某乘用车实现了车身减重53.44 kg,NEDC工况冷机节油1%、热机节油1.22%,同时实现C-NCAP正面碰撞15.6分、偏置碰撞16.74分,满足五星安全标准.  相似文献   

4.
以某SUV纯电动汽车的后背门为研究对象,利用有限元优化设计方法,以T300牌号炭纤维复合材料代替钢对汽车后背门进行轻量化的重新设计,通过自由尺寸优化、尺寸优化和铺层次序优化三个阶段对后背门炭纤维复合材料的铺层进行优化,并对优化后的炭纤维后背门各项性能参数进行分析。结果表明,相对于原钢制后背门,优化后的炭纤维后背门的扭转刚度、弯曲刚度、侧向刚度、扭转模态频率和弯曲模态频率等性能指标均得到不同程度的提升,且质量由原来的16.70kg降至8.32kg,减重率达到50.2%,轻量化效果明显。  相似文献   

5.
以折叠电动车主折叠机架为对象,利用有限元对其进行轻量化设计.运用Solid Works建立主折叠机架的简化三维模型,导入到ANSYS Workbench中进行静力学分析,并利用拓扑优化和尺寸优化的方法对主折叠机架连杆进行轻量化设计.结果表明:原始折叠电动车主折叠机架在3种工况下有可优化的空间,进行拓扑优化后主折叠机架由10.97 kg变为10.48 kg,减轻了4.47%;对拓扑优化后的结构进行力学分析,发现主折叠机架还有进一步优化的空间.在拓扑优化的基础上,通过尺寸优化的方法对主折叠机架的槽型折弯件的截面尺寸进行轻量化设计,其质量变为8.72 kg,两次优化主折叠机架共减轻了20.51%,轻量化效果明显.  相似文献   

6.
大客车车身骨架轻量化改进设计   总被引:11,自引:2,他引:11  
通过对大客车车身的有限元分析,获得车身强度分布状况,在此基础上进行车身骨架的轻量化改进设计.针对ANSYS交互界面好的特点,采用正交法和交互调整相结合的方法进行计算.对一些强度、刚度影响小的构件,直接进行改进,而一些重要构件则安排正交计算,进行不同工况水平下的多次计算,从中寻求轻量化设计方案.计算结果表明,这种方法切实可行,具有明显效果,为大客车的车身骨架提出一个切实可行的轻量化改进方法.  相似文献   

7.
提出了一种基于水平集拓扑优化的车身结构轻量化研究方法,该方法非常适合于处理车身结构设计中大量存在的多孔连续性结构体的拓扑优化.运用构造的基于水平集的数值方法,对车身近似二维的典型结构件发动机罩内板进行拓扑优化.结果表明,基于水平集的拓扑优化方法应用于车身结构轻量化研究是可行和有效的.  相似文献   

8.
基于某企业二级齿轮传动系统,对齿轮系统轻量化优化方法进行研究分析,提出一种基于遗传算法(GA)与差分进化算法(DE)的混合优化算法(GDE)。结合GA算法全局寻优能力强的特点,为DE算法提供优质初始种群,以二级齿轮中心距和体积最小为目标函数进行优化设计并将结果与两种传统算法结果进行比较,对轻量化后齿轮系统进行了模态分析。优化结果显示,GDE算法收敛速度最快,优化后齿轮体积减少了10.5%,重合度增加了5.8%;仿真结果显示,轻量化后齿轮不会产生共振,符合实际工况需求。  相似文献   

9.
利用HyperWorks软件对6127G全承载城市客车进行轻量化设计.从结构的合理设计和材料的合理使用两方面出发,通过对比分析确定优化方案,优化后对车身强度和刚度进行校核,以检验优化结果的合理性,确保结构在满足强刚度要求的前提下减轻质量.结果表明:优化后车身质量2 570.25 kg,减轻了105.83 kg,整车性能满足使用要求.  相似文献   

10.
以YP2.0-A型遥控跑车的减速机构为研究对象,采用Solidworks软件进行三维建模.应用HyperMesh中的ANSYS模块对其进行3D网格划分,利用ANSYS对其进行接触静力学仿真分析.通过分析得出该构件的最大工作应力为123.23 MPa,满足材料的强度条件和工作要求.以材料的许用应力及其位移作为优化的约束条件,利用OptiStruct进行拓扑优化设计,齿轮的质量与原始设计相比,减低了11.85%,使其达到轻量化的目标.  相似文献   

11.
为解决电驱动桥非同轴问题,减少环境污染,进行了电驱动桥的轻量化设计。提出一种新型纯电动汽车同轴一体化电驱动桥结构,在4种极限工况下进行了桥壳强度、刚度有限元仿真分析。根据有限元分析结果,以桥壳厚度为优化变量、以桥壳质量为目标函数建立电驱动桥桥壳轻量化优化模型。以目标驱动方法对轻量化模型进行求解,对比分析桥壳厚度与驱动桥桥壳最大位移变形、最大应力及质量之间的响应曲面关系。对轻量化设计后的电驱动桥在4种极限工况下进行仿真分析,将分析结果与轻量化设计前进行对比,结果显示轻量化后驱动桥减重8.4%,轻量化效果明显且能够满足驱动后桥使用要求。  相似文献   

12.
驱动桥壳轻量化设计对于提高承载能力、降低生产成本具有重要的意义.本文在驱动桥壳有限元分析和疲劳分析计算的基础上建立驱动桥壳多目标优化模型,对重型卡车驱动桥壳进行参数化设计,建立正交试验表,利用田口方法和综合评价方法对驱动桥壳的疲劳性能稳健性和质量进行优化设计.优化结果表明,此方法可以应用于驱动桥壳的多目标优化,优化后驱动桥壳的疲劳稳健性能得到提高,减轻了质量,因此节约了桥壳材料,降低了生产和运营成本,提高了设计水平.  相似文献   

13.
根据《客车上部结构强度的规定》对校车车身结构侧翻安全性的规定,建立和验证某校车有限元分析模型.采用均匀设计方法对校车的侧围结构厚度参数进行多水平多因素实验设计和侧翻仿真分析,并拟合实验设计数据获得轻量化水平较优的因素水平组合.结果表明:在侧围结构满足法规对生存空间要求的前提下,选择因素水平组合U2465并参考实际型钢的厚度规格(1(1.0,1.0),2(2.0,1.5),3(3.0,2.0),4(2.5,2.0)),可使侧身结构质量轻量化24.39%.  相似文献   

14.
利用Altair Inspire Studio软件建立活塞头部件优化模型,对原模型进行了有限元分析与轻量化设计,并进行了拔模、对称、挤出等工艺方案的优化对比,结果显示:在双向拔模与双向对称工艺下,优化后的活塞头模型质量较原模型减少了48.6%,模型在工况下的最小安全系数为3.1,满足零件的强度与轻量化设计要求,为活塞头部件的轻量化设计提供了新的思路与可行性方案。  相似文献   

15.
首先对目前产品轻量化设计的现状进行了分析,而后以某机械臂结构为研究对象,应用有限元分析软件进行了静力学求解,并基于其静力学结果对研究对象的结构进行了拓扑优化分析。为高效的利用拓扑优化计算结果,将计算结果输出并运用正/逆向技术进行了模型重构,对重构后的模型进行了相同加载条件下的静力学校核,以验证结构设计的合理性。通过研究验证了拓扑优化与逆向工程技术相结合的方法在产品轻量化设计过程中的可行性。  相似文献   

16.
为降低某重型自卸车驱动桥壳的质量,对其进行有限元静力学分析,通过解析桥壳结构确定了12个设计参数。利用拉丁超立方抽样法选取60个样本点,根据样本模型有限元分析结果对相关设计参数进行相对灵敏度分析,并构建了桥壳质量、变形、应力、固有频率的Kriging代理模型。以桥壳总成质量和整体最大应力最小化为目标,采用NSGA-II多目标优化算法对所建代理模型进行求解,得到驱动桥壳轻量化设计的最优方案。优化后驱动桥壳质量降低了12.1%,并且桥壳变形、应力和固有频率等性能指标均符合设计要求,验证了所提出的驱动桥壳轻量化设计方法的有效性。  相似文献   

17.
为保证机床的加工精度和切削效率,机床的运动部件需要较高的刚度和较轻的质量.以某型号磨床的主轴箱为研究对象,建立包含主轴箱、电主轴磨头和滚珠丝杠等部件的有限元柔性多体动力学模型,运用等效静态载荷理论将柔性多体动力学分析与静态结构优化理论相结合,采用拓扑优化技术对主轴箱进行轻量化设计.与传统静态载荷下的主轴箱结构拓扑优化设计相比,该方法更适用于机床运动部件的结构轻量化设计,优化后的主轴箱结构在保证静动态性能的前提下质量减轻8.5%.  相似文献   

18.
以提高风扇叶片抗冲击性能为目标,以空心率为约束条件,进行风扇叶片创新构型设计优化,并通过试验件加工和性能评估,验证所设计方案的合理性.建立了瞬态冲击载荷静力学等效方法,获取了风扇叶片在工作状态下能够有效抵抗鸟撞冲击载荷的最优质量分布.基于优化结果,建立了低质量、高抗冲击性能的风扇叶片几何构型.通过3D打印风扇叶片优化构型试验件,进行加工工艺可行性和优化构型试验件的力学性能评估,验证了优化设计方案的工艺可实现性、静力性能和抗鸟撞性能.结果表明:上述优化方法的建立能够为航空发动机空心风扇叶片设计提供可行的技术手段,使得叶片空心率提高到45%以上,并显著提升叶片抗冲击性能.  相似文献   

19.
20.
邓宙 《科技资讯》2011,(24):49-49
车身轻量化的设计主要是利用结构力学和材料力学等学科,对车辆的结构在不影响安全性情况下进行的减轻质量的优化设计。从目前的设计思路来看,一种是对结构形式的改进,一种是对材料的改进,而不论哪种改进都需要建立在安全性即结构刚度满足车辆安全的基础上,因此轻量化的设计理论应立足在满足结构刚性的基础上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号