首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锂离子电池电极上的电压和电流分布会导致电极各处产热率和放电深度的不同,进而影响整个单电池的温度分布和放电性能.通过构建锂离子电池电极模型,用以分析电压、电流、产热率、放电深度在锂离子电池电极上的分布.仿真结果表明:靠近极耳区域处的电压梯度及穿过隔膜电流梯度明显大于其他区域;电极上的产热率分布与穿过隔膜电流密度有关;在放电过程中会优先消耗靠近极耳处的活性物质,导致此处的放电深度一直大于平均值;锂离子电池电极放电深度一致性随放电时间增加而提高,而产热率分布一致性则会出现交替增大、减小现象.  相似文献   

2.
针对锂离子电池内部浓差极化及其影响因素,对典型的NCM/C系锂离子电池进行试验获得关键性能参数,利用COMSOL软件建立电化学模型并试验验证其准确性,基于模型开展电池放电过程中固、液相浓差极化特性及其主要因素对电池放电性能影响的仿真研究.结果表明:电池在放电过程中,单独改变负极粒径对负极固相浓差极化的影响更加明显,等比变化范围内负极引起的固相浓差变化幅度约是正极的136.05%;改变正极厚度更易加剧液相浓差极化,等量变化范围内正极引起的液相浓差变化幅度约是负极的199.01%;正极厚度对电压平台和电池容量影响显著,负极粒径影响电压平台而对容量几乎无影响;相比两者,正极厚度是同时影响电池浓差极化和放电性能的关键因素.  相似文献   

3.
在锂离子电池得到广泛使用的同时,热安全一直是制约锂离子电池进一步发展的重要障碍。通过构建锂离子电池二维电极电-热模型和三维单电池热模型,将二维电极产热分布加载到三维单电池热模型中,同时将三维单电池热模型的温度分布映射到二维电极模型上。对比绝热环境下1C放电和2C放电仿真与实验数据,表面温度与产热率误差均小于5%。基于电极产热分布的热模型可以准确的模拟不同工况下单电池的产热率和温度分布。仿真结果表明产热率在电极上的分布随放电时间而变化;放电倍率对电池温度分布规律没有影响,中心区域温度最高;放电倍率越大,单电池内的温差越大。  相似文献   

4.
为实现精确的电池热管理,选取正、负极材料分别为LiyMn_2O_4和LixC_6的层叠式锂离子电池为研究对象,建立了微观-宏观尺度耦合、电化学-热耦合模型,分析了不同放电倍率下单体电池的放电特性及电池包的平均温升、单体电池内部生热机理及变化特性,并详细定量分析了生热量各组成部分所占的比例及变化.分析结果表明:高放电倍率下,电池放电性能变差,温升显著提高,5C放电倍率下,温度升高63,℃.低放电倍率下,可逆热是主要的生热来源,高放电倍率下,液相中的欧姆热是主要的生热来源;相比之下,负极生热量最高,其主要来源于负极的可逆热,隔膜中所占百分比次之,正极最少,其主要来源于正极的不可逆热和欧姆热.  相似文献   

5.
回顾了流光理论的基本过程,并运用流光理论对混粉电火花加工极间介质击穿的微观过程进行了详细论述.将粉末颗粒视为插入两电极之间的一串联电极,则极间距离以粉末颗粒为界分成两段,两段介质均以流光的形式击穿后,放电通道便由一电极表面经由粉末颗粒到达另一电极表面而形成串联放电.在此基础上,结合实验现象,研究了放电通道的位形,认为放电过程以单通道放电为主,而正极放电点面积的增大改变了正极表面的热量分布,最终确保了加工表面粗糙度的改善.  相似文献   

6.
锂离子电池具有比能量高、循环寿命长、输出功率大、可承受较宽充放电倍率等特点,已成为电动汽车领域电池开发的研究热点.锂离子电池在循环过程中的热行为对其性能、循环寿命和安全性有着较大的影响.本文基于21700圆柱形锂离子电池建立电化学-热耦合模型,并通过实验验证模型的精确性.分析了充电过程中的热行为,包含温度和产热分布.结果表明,充电过程中的温升主要受恒流充电过程的影响,电池平均温度和总产热均呈先上升后下降的趋势,且电池不可逆热占比高于可逆热.通过对比充放电过程的温度分布和产热变化可知,恒流充电过程中的产热和温度均大于恒流放电过程,充电过程具有温度提升时间短、变化速度快、产热峰值高等特点.  相似文献   

7.
采用高导电性碳材料和商业活性炭分别作为硫的载体,与单质硫混合后进行热处理制得SP/S和CAC/S硫碳复合材料,利用热重测试、循环伏安、交流阻抗和恒流充放电测试等分析方法,研究了正极中电极材料厚度、硫碳复合比例对电池电化学性能的影响.结果表明:适当增加电极材料厚度可以有效地改善Super-P材料电极综合电化学性能;通过改变硫碳复合比例,提高硫含量则对活性炭材料锂硫电池电极的性能提升有着显著的效果.其中,含硫量为63.60%的CAC/S正极材料首次放电比容量达到908.8 m Ah/g,活性物质利用率为54.2%,100圈循环后放电容量为594.1 m Ah/g,容量保持率达到65.4%.  相似文献   

8.
基于锂离子电池生热模型和材料热物性参数,建立了锂离子电池充放电热行为热模型。进行了单体电池不同倍率放电及充放电循环下的瞬态热行为数值仿真。结合电池充放电过程温升曲线测试,验证了锂离子电池数值仿真模型。研究结果表明:单体电池最高温度位于正极柱,最低温度位于壳体顶部。随着电池放电倍率的增大,电池温度升高,单体温差增大。电池外壳材质对热模型传热效果具有一定的影响,锂离子电池电极连接部位温升显著。  相似文献   

9.
全固态薄膜锂电池具有固态电解质层薄、固固界面致密等特点,可作为微小型设备的储能元件。与传统锂离子电池相比,全固态薄膜锂电池内部不含液态电解液,反应与传质过程皆在固相中进行,导致全固态薄膜锂电池的倍率性能一般较差。为解决该问题,该文基于磁控溅射和真空蒸镀技术制备了正极为钴酸锂、固态电解质为锂磷氧氮(LiPON)、负极为金属锂(Li)的全固态薄膜锂电池。采用时频域配合和实验与仿真相结合的方法,系统解析了影响全电池倍率性能的关键因素。运用基于全电池倍率实验电压曲线的曲线平移分析方法及基于一维阻抗模型和阻抗谱的动力学参数辨识方法,分析了电池内部不同部件、不同物理过程对电池倍率性能的影响,结合一维时域模型仿真结果得出如下结论:电池中影响大倍率下放电总容量的主要限制因素为正极材料中的锂离子扩散过程,放电末期正极扩散系数低是大倍率下放电容量衰减的主因;影响瞬态放电功率的主要限制因素为固态电解质中锂离子的电迁移过程,高固态电解质固相过电势是放电功率损失的主因。基于上述结论,该文提出了适当降低固态电解质薄膜厚度和缩短正极离子扩散路径等改进电池倍率性能的初步设计思路,研究了一种全固态薄膜锂电池倍率性能的分...  相似文献   

10.
采用二维数值模拟的方法计算了表面放电型PDP在不同结构下相邻3个显示单元的放电过程.研究了放电过程中各单元内电子、氙谐振态浓度分布和其平均浓度随时间的变化情况.在流体模型计算基础上,采用蒙特卡罗模型对单元内大量谐振光子的辐射、捕获过程进行模拟跟踪,从而得出各放电单元内所产生谐振光子在荧光粉层上的分布.研究了放电过程中相邻单元之间的影响,结果表明,对传统条形障壁结构,单元内维持电极间距增大,放电空间高度增加会使放电串扰和发光串扰加强,Waffle型障壁结构不仅能提高放电效率,而且能有效阻止串扰的发生.  相似文献   

11.
在介质阻挡放电过程中,由于离子对电极表面不断轰击产生热量,电极温度会有所升高,放电光电特性也会随之变化.通过改变外加电压和等离子体放电时间发现,电极温度随着外加电压的增加和等离子体放电时间的延长而增加,并且高压电极的温度比接地电极的温度增加得更快.延长等离子体放电时间发现,输入功率、放电脉冲数目和光谱谱线相对强度都在上升,电流峰值却在下降.所得研究结果为今后介质阻挡放电光电特性研究提供了时间上的参考性,具有重要的研究意义.  相似文献   

12.
针对以电子给体聚(3-己基噻吩)(P3HT)和电子受体6,6-苯基-C61-丁酸甲酯(PCBM)共混薄膜为活性层的本体异质结聚合物太阳能电池,根据光学干涉效应和转移矩阵方法建立了非相干光吸收理论模型,研究了电极修饰层、活性层和阴极的厚度对电池内部光电场分布和活性层内部光电场强度的影响.结果表明:各功能层厚度对电池内部光电场分布和活性层光电场强度具有不同程度的影响,其中活性层和电极修饰层厚度的影响较大,而阴极厚度的影响较小;引入合适厚度的电极修饰层有利于增加活性层内部的光电场强度,提高太阳能电池的能量转换效率,改善器件的光伏性能.  相似文献   

13.
采用流体模型研究了一种五电极交流等离子体显示板(AC PDP)的单点触发放电过程及其真空紫外线(VUV)的辐射特性.数值模拟结果表明,在放电期间恰当地调整电极上的驱动电位,可以改变介质层表面电荷积累,获得较高的壁电压.通过数值模拟还获得了五电极AC PDP维持放电期间的VUV辐射效率,其中173 nm的VUV辐射占总真空紫外辐射效率的27%,有利于提高AC PDP的发光效率.  相似文献   

14.
水中脉冲高压放电诱导产生H_2O_2和O_3的研究   总被引:2,自引:2,他引:2  
采用自制的针一筒电极脉冲高压放电装置进行水中高压放电诱导产生H2O2和O3的实验,研究了电极间距,放电电压,放电时间,放电方式曝气条件等因素对诱导产生H2O2和O3的影响,同时对放电过程能耗及其效率进行了研究.结果表明:电极间距和放电时间对产生H2O2和O2的浓度有较大影响,放电电压和放电方式影响不大.曝气条件下进行高压放电时,水中会产生NO2ˉ,NO2ˉ等阴离子,水体系pH降低,电导率增大.放电过程能量有效利用率为88.3%.  相似文献   

15.
目的研究全钒液流电池正极传质的介观机理,为多孔电极传质效率的提高和全钒液流电池整体性能的提升提供理论指导.方法采用粗粒化分子动力学模拟方法,分析全钒液流电池正极反应中各粒子的介观传递特性.分析电池荷电状态(SOC)、温度、碳纳米管长度以及碳纳米管含量对正极电解质中各组分粒子扩散系数和有序性的影响.结果粒子扩散系数随着温度增高而增大,但随碳纳米管长度的增加而减小.当电池荷电状态SOC为50%时,溶液中离子种类最多,多种离子间的相互作用阻碍单个离子的扩散,从而降低了电解液中各粒子的扩散系数.在碳纳米管质量比为1/4~1/2,正极电解液浓度较低,减小了VO2+和VO+2之间的缔合作用,溶液黏度也随之下降,有利于扩散.结论深入研究全钒液流电池正极传质过程,降低因传质因素导致的浓差极化,增大电池反应速率.  相似文献   

16.
动力锂离子电池的SOC-OCV关系曲线,库伦效率、温度、放电倍率对电池内阻、电压一致性影响和放电倍率与温度的关系特性是动力电池组成组技术和均衡管理的重要参数。通过充放电实验,测得电池SOC-OCV关系、库伦效率-放电电流关系曲线,并通过8阶拟合,可以较准确地反映SOC-OCV函数关系。不同电池单体内阻随温度变化的变化率不同,某个温度下阻值相近的电池单体在其它温度下差异可能较大,极化内阻较欧姆内阻更为明显;电池放电倍率越大,电池组中电池电压的一致性越差。电池的最高温度与放电倍率有关,正极处的温度最高,负极温度与正极的温度差随着放电倍率的增大而增大。  相似文献   

17.
为刻画外部电网故障时微电网孤岛运行的能力,提出微电网可孤岛状态及其发生概率定义,即:不计外部电网对微电网的功率支持及内部分布式电源故障影响,微电网能满足自身负荷需求的状态(可孤岛运行状态)及其发生概率。分析可孤岛运行状态和不可孤岛运行状态下不同故障类型(外部电网、内部配电网元件、分布式电源)对微电网负荷点的影响,推导出2种运行状态下负荷点可靠性参数的解析表达式,结合2种运行状态的发生概率,得到微电网可靠性评估模型。采用RBTS-BUS6算例验证了模型的有效性和实用性,结果表明增大储能电池最大放电功率能有效提高微电网负荷点可靠性。  相似文献   

18.
质子交换膜燃料电池在不同放电状态下的阻抗分析   总被引:3,自引:0,他引:3  
针对质子交换膜燃料电池在不同放电状况下具有不同阻抗的特性,通过电化学阻抗谱法测量了单蛇形流场质子交换膜燃料电池在不同放电电流下的电化学阻抗谱图,并通过R(QR)等效电路模拟得到电池在不同工作状态下的电路元件参数.实验结果表明,由于随着放电电流的增大,电池内的水由少到多再到过量,从而引起电极上的反应过程由慢到快再变缓,因此电池内部的电荷转移电阻先减小后增大.在大电流情况下,由双电层充放电效应引起的附加阻抗比较明显,使得放电电流越大,电池的系统阻抗增大越显著,而在中等放电电流(5 A)时,电池系统的阻抗最小.  相似文献   

19.
针对极地无人机系统供电保障问题,为极地锂离子电池开发及电池管理技术研究提供依据,对12 A·h三元镍钴锰酸锂电池在极寒环境下的特性展开了实验研究.结果表明:在0℃以下,随着环境温度的降低,电池在不同放电倍率下的可用容量迅速减小,最大放电深度的衰减速率不断加快,欧姆内阻与极化内阻均显著增大且极化内阻的变化更为突出,开路电压明显降低;在低于-40℃的环境温度下,放电前对电池表面进行预热能显著改善电池放电性能,预热温度的变化不影响相同倍率放电时电池表面的平衡温度,同时采取预热与保温措施能够有效恢复电池的容量特性与功率特性.  相似文献   

20.
为提升太阳池的蓄热能力和运行稳定性,需要充分了解盐梯度太阳池的热盐对流特性。本文采用格子Boltzmann方法模拟研究具有多孔介质层内产热腔体内的双扩散自然对流与熵产。探讨内产热系数、达西数、Soret与Dufour效应等影响因素作用下,腔体内热质传递过程与熵产的变化规律。结果表明:低达西数的多孔介质层有助于抑制腔体底面的传热传质效率,且盲目减小达西数的影响并不大,而内产热的增加会抑制腔体底面的传热传质效率。Soret效应有助于促进腔体内部的传质过程,而Dufour效应对传热过程有积极影响。低达西数的多孔介质层有助于抑制熵产的产生,而内产热强度对熵产有促进作用,且在高内产热强度的工况下,热不可逆性处于主导地位。Soret效应对熵产的作用不明显,而Dufour效应对熵产有促进作用,且在高Dufour效应作用下,热不可逆性在总熵产中占主导地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号