首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
油酸修饰PbS纳米粒子作为润滑油添加剂的SEM研究   总被引:3,自引:0,他引:3  
在醇–水混合溶剂中合成了油酸(OA)修饰PbS纳米粒子,用四球摩擦磨损试验机考察了其作为润滑油添加剂的摩擦学行为,并利用SEM及EDS研究了磨损表面. 结果表明,由于在摩擦表面生成化学反应膜,油酸覆盖的PbS纳米粒子作为润滑油添加剂具有良好的减摩、抗磨性能.  相似文献   

2.
为探究石墨烯作为润滑油添加剂与现有二烷基二硫代磷酸锌(ZDDP)添加剂之间的复配性能,以span80为分散剂,在基础油里制备出不同质量含量的石墨烯添加剂油样以及石墨烯和ZDDP混合添加剂油样.利用四球摩擦磨损试验机对添加剂油样进行摩擦磨损试验,采用金相显微镜、能谱仪对钢球磨斑直径、磨斑形貌和磨斑表面元素进行分析.结果表明:当石墨烯的质量含量为0.03%时,油样的平均摩擦系数约为0.047,磨斑直径约为0.297 mm;与基础油相比,分别降低31.9%和22.6%;当石墨烯和ZDDP的质量含量分别为0.03%和0.5%时,油样的抗磨性能得到极大提高,磨斑直径约为0.145 mm,与单石墨烯添加剂油样相比,约降低36.9%.由此看出,石墨烯与ZDDP共混物作为润滑油添加剂时可改善摩擦副间的摩擦学性能,并且两者能起到较好的协同作用.  相似文献   

3.
三巯基三嗪衍生物在菜籽油中的摩擦学性能   总被引:2,自引:0,他引:2  
合成了两种三巯基三嗪衍生物WDBA和WDIOA,利用四球摩擦磨损实验对该衍生物添加剂在菜籽油中的摩擦学性能进行测试.结果表明,该系列添加剂能大幅提高基础油的抗磨减摩性能和极压值,是一类性能良好的润滑油添加剂.利用扫描电子显微镜和X射线光电子能谱分析了钢球表面磨斑的形貌和典型元素分布及化学态.结果表明,在摩擦过程中,添加剂在钢球表面形成了一层润滑膜,从而起到良好的抗磨减摩作用.  相似文献   

4.
设计合成并表征了4种不同结构的新型环境友好润滑油添加剂(N1、N2、N3、N4);考察了4种添加剂的热稳定性、抗腐蚀性和油溶性;研究了4种添加剂在液体石蜡(LP)中的摩擦学性能;用扫描电子显微镜(SEM)和能谱分析仪(EDS)观察和分析了钢球磨斑的表面形貌和元素组成,初步探讨了其摩擦作用机理.结果表明:4种添加剂均具有优良的热稳定性、抗腐蚀性和油溶性; N2的摩擦学性能最好,添加1. 0%N2的LP的最大无卡咬负荷(PB)值比LP提高了74%、烧结负荷(PD)值是LP的两倍,1. 0%N2+LP体系中钢球磨斑直径(WSD)比LP中的钢球磨斑直径缩小了54%、摩擦系数比LP减小了28%; 4种添加剂的加入均能明显减小WSD、减少表面磨痕数量;添加剂在摩擦过程中参与了摩擦化学反应,有效地提高了LP的极压、抗磨和减摩性能.  相似文献   

5.
环境友好纳米粒子添加剂在润滑油中应用的研究   总被引:1,自引:0,他引:1  
选择了2种环境友好纳米粒子:纳米碳酸钙和纳米稀土作为润滑油抗磨、极压添加剂,并将其单独或组合加入到500SN基础油中.采用四球摩擦磨损试验机测定了含纳米粒子的润滑油的摩擦学性能,采用X射线光电子能谱仪分析了磨损钢球表面化学组成.结果表明:含环境友好纳米粒子组合物的润滑油具有最佳的抗磨减摩性能,其配比为:n(CaCO3):n(RE):1:1,总质量分数为0.6%.  相似文献   

6.
为优化纳米氟化镧的制备方法,探索纳米氟化镧作为润滑油添加剂的摩擦学性能,采用化学沉淀法制备氟化镧(La F3)粒子,使用全方位行星式球磨机球磨后,得到纳米级氟化镧粒子.采用纳米激光粒度仪和X射线衍射仪(XRD)对样品进行表征.使用平平加OS-15(脂肪醇聚氧乙烯醚)作为表面活性剂,把纳米氟化镧粒子添加到基础油中,采用万能摩擦磨损试验机做四球试验,以评价纳米氟化镧粒子在润滑油中的抗磨减摩特性.试验钢球在金相显微镜和扫描电子显微镜(SEM)下观察,分析其抗磨减摩机理.结果表明:当纳米氟化镧的添加量为2.5%时,抗磨减摩效果最佳;纳米氟化镧润滑油与基础油相比,摩擦系数减小了52.7%,磨斑直径减小了29.6%;纳米氟化镧润滑油的磨斑较基础油更规则,犁沟较浅.分析表明,纳米氟化镧在摩擦磨损过程中及时填充到摩擦副表面,易与基体结合生成化学反应膜,有效阻挡了金属基体之间的摩擦磨损,起到良好的抗磨减摩作用.  相似文献   

7.
DDP修饰纳米粒子的摩擦学性能比较   总被引:2,自引:0,他引:2  
利用表面修饰法合成了表面为DDP所修饰的PbS、PbO、ZnS和Zn(OH)2纳米粒子,并用四球摩擦磨损试验机考察了它们分别作为润滑油添加剂的摩擦学行为。结果表明,无机纳米核的不同对DDP修饰纳米粒子作为润滑油添加剂的摩擦学性能影响甚微,所合成的DDP修饰无机纳米粒子作用润滑油添加剂都能够明显提高基础油的抗磨性能,但是却不能有效改善其减摩能力。  相似文献   

8.
利用表面修饰法合成了表面为DDP所修饰的FeS和CdS纳米粒子,并用四球摩擦磨损试验机考察了它们分别作为润滑油添加剂的摩擦学行为.结果表明,无机纳米核的不同对DDP修饰纳米粒子作为润滑油添加剂的摩擦学性能影响甚微,所合成的DDP修饰无机纳米粒子作为润滑油添加剂都能够明显提高基础油的抗磨性能,但是却不能有效改善其减摩能力.  相似文献   

9.
为了探究石墨烯作为润滑油添加剂在高温工况下摩擦学性能和抗黏着性能,采用四球摩擦磨损试验机对添加石墨烯的基础油进行摩擦磨损实验。用XRD对石墨烯进行表征,用基础油和添加不同质量分数的石墨烯润滑油进行对比。结果表明:在润滑油中添加石墨烯能显著提高摩擦副在高温工况下的摩擦学性能和抗黏着性能。在质量分数为0. 03%时,其摩擦系数约降低22. 5%,磨斑直径约减少48. 9%,抗黏着时间约增加44. 9%。  相似文献   

10.
为研究微晶SiO2粉体添加剂的抗磨减摩作用,采用微晶SiO2矿物粉体作为润滑油添加剂,利用AMSLER摩擦磨损试验机研究45#钢摩擦副在添加剂润滑油润滑下的摩擦学特性.磨损后钢环表面的形貌和成分通过扫描电子显微镜和X射线光电子能谱仪进行分析.结果显示:以微晶SiO2粉体为添加剂润滑时在摩擦副表面形成一层陶瓷保护层.相比基础油,在微晶SiO2添加剂润滑油润滑条件下,摩擦副的接触状态由金属之间的摩擦磨损转化为自修复膜层之间的摩擦磨损.添加剂润滑油较基础油润滑条件下的摩擦系数大.摩擦磨损过程中自修复膜层的形成,隔离了金属摩擦副的直接接触,降低了试样磨损失重,具有良好的耐磨性能.  相似文献   

11.
目的 将5种多库酯类离子液体作为非极性基础油液体石蜡(LP)和极性基础油聚乙二醇(PEG400)的添加剂,研究其作为钢/镁合金摩擦副润滑剂的摩擦学性能,并分析润滑作用机理.方法采用离子交换法合成离子液体添加剂,并利用SRV-V微动振动摩擦磨损试验机、三维表面轮廓仪考察其摩擦学性能,采用X射线光电子能谱仪、扫描电子显微镜和石英晶体微天平对润滑作用机制进行探究.结果 5种多库酯类离子液体作为添加剂具有良好的减摩抗磨性能;添加量为1% 可以有效改善基础油LP的摩擦学性能,而离子液体作为基础油PEG400添加剂在3% 含量可以起到一定的减摩抗磨效果;XPS结果表明在摩擦过程中润滑剂与镁合金表面发生了摩擦化学反应,形成了MgO ,Mg3 (PO4 )2和MgSO4等物质的摩擦化学反应膜.结论 多库酯类离子液体作为非极性基础油LP和极性基础油PEG400的添加剂,均可以改善其对钢/镁合金摩擦副的润滑性能,且物理吸附膜和摩擦化学反应膜共同决定了其润滑性能.  相似文献   

12.
室温下采用MM-W1立式万能摩擦磨损试验机研究了ZnS纳米颗粒作为基础油添加剂的摩擦学性能,文章考察了纳米ZnS添加量、试验参数(载荷、转速)对摩擦系数的影响,简单探讨了摩擦机理.结果表明:添加剂纳米ZnS在摩擦磨损试验机中表现出良好的减摩抗磨性能,其在摩擦过程中形成的沉积膜起到了非常重要的作用,可以作为减摩涂层和润滑油减摩添加剂使用.  相似文献   

13.
用超声波对石墨(EG)进行处理得到蠕虫石墨和纳米石墨薄片混合体的膨胀石墨润滑油添加剂.采用自由基乳液聚合方法合成了膨胀石墨/聚合物复合添加剂,并用四球摩擦磨损试验机考察了添加剂在基础油(液体石惜)中的摩擦磨损性能.结果表明,一定浓度的膨胀石墨/聚合物复合添加剂可有效提高基础油的承载能力,降低磨损量,其最佳用量约为0.5%.  相似文献   

14.
目的 合成含有高活性硫元素的共价有机骨架纳米材料,将其作为润滑油添加剂加入到基础油聚α-烯烃(PAO 10)中,研究其在钢/钢摩擦副上的减摩、抗磨性能,揭示可能存在的润滑机理.方法 以三聚硫氰酸和三聚氯氰为原料,采用溶剂热法在不同温度下合成硫醚键桥接的三嗪基共价有机骨架纳米材料(简称S-COFs-T,T =80 ,120 ,160) ,并利用X射线粉末衍射仪、X射线光电子能谱仪、同步热分析仪、扫描电子显微镜、微振动摩擦磨损试验机和三维光学轮廓仪对所合成的纳米材料进行理化性能和摩擦学性能表征.结果 S-COFs- T纳米材料随着合成温度的升高,结晶度逐渐增强,同时尺寸逐渐变小且具有层状结构;将其用作PAO 10基础油添加剂时能很好的改善基础油的摩擦学性能,其中S-COFs-160样品的效果最佳,当添加量为0 .5 wt% 时,对比基础油,摩擦系数降低了57 .2%、磨损体积减小了46 .3%.结论 反应温度越高,S-COFs纳米材料的成核速度越快、尺寸越小,越有利于纳米材料进入摩擦副滑动界面;高活性硫元素和三嗪环基团不仅能在金属摩擦副表面以配位相互作用形成稳定的吸附保护膜,而且在摩擦中能发生摩擦化学反应形成反应膜,二者的协同作用可有效地控制摩擦、抑制磨损和改善润滑.  相似文献   

15.
纳米ZrO2作为润滑油添加剂的摩擦学性能研究   总被引:1,自引:0,他引:1  
利用溶剂置换干燥法制备了粒径在20-50nm范围的氧化锆粒子,用TEM及XRD对该产物进行了表征.用四球机及环块摩擦磨损试验机测定了纳米氧化锆作润滑油添加剂的摩擦学性能.研究发现纳米氧化锆的加入,能有效提高500SN基础油的抗磨减摩性能及承载能力;且纳米氧化锆的加入量有一最佳值,超过此量,含纳米粒子的润滑油摩擦学性能下降;纳米氧化锆的摩擦学作用机理是在摩擦表面沉积而形成具有抗磨减摩作用的润滑膜.图9,参9.  相似文献   

16.
纳米LaF3在润滑油中的分散稳定性对其摩擦学性能的影响   总被引:4,自引:0,他引:4  
用醇水法制备了表面修饰纳米LaF3,通过相转移将纳米LaF3从水相转移到油相(500SN基础油)得到纳米LaF3含量为10.2%(质量百分数)的液体添加剂。采用X-射线衍射仪(XRD)和透射电镜(TEM)分析了纳米LaF3的结构和形貌。用四球机考察了其摩擦学性能及用扫描电子显微镜(SEM)观察了摩斑表面形貌。结果表明:颗粒状纳米LaF3平均粒径为9~17 nm,液体添加剂中的纳米粒子在基础油中的分散稳定性和摩擦学性能大大高于用溶剂洗涤法制得的LaF3干粉粒子,纳米粒子在基础油中的分散稳定性对其摩擦学性能影响很大。  相似文献   

17.
层状硅酸钠的油酸改性及摩擦学性能研究   总被引:1,自引:0,他引:1  
用油酸对层状硅酸钠表面进行改性,得到改性层状硅酸钠,用沉降体积、红外光谱对改性效果进行表征.把改性层状硅酸钠作为润滑添加剂分散到500SN基础油中,用HQ-1摩擦磨损试验机考察了其摩擦学性能,用扫描电子显微镜观察了磨痕表面形貌,探讨了改性层状硅酸钠的减摩抗磨机理.结果表明:改性层状硅酸钠在150SN基础油中具有良好的分散稳定性;改性层状硅酸钠作为润滑添加剂可以显著提高500SN基础油的减摩性能,在质量分数为0.8%时,摩擦因数最小,油样温升最小,试块磨损量最小;层状硅酸钠晶层之间的滑动有效降低了摩擦副的摩擦磨损.  相似文献   

18.
在水-醇混合介质中采用阳离子共沉淀表面修饰法,制备了硬脂酸修饰的CeF3纳米微粒,利用透射电子显微镜(TEM)对其形貌进行了表征,在四球摩擦磨损试验机上考察了CeF3纳米微粒摩擦学特性.结果表明,表面修饰CeF3纳米微粒在有机溶剂中具有良好的分散性和稳定性,作为润滑油添加剂,显示出良好的减摩、抗磨和承载性能.  相似文献   

19.
为探究不同的滑动模式对含表面修饰MoS_2纳米片润滑油的摩擦学性能的影响,将含不同质量分数KH-MoS_2的润滑油样分别在单向和双向滑动模式下进行摩擦学试验,对比分析了其摩擦学性能,并建立了单向和双向滑动模式下的润滑模型。首先,使用超声处理硅烷偶联剂(KH570)修饰的MoS_2纳米片(KH-MoS_2)分散到石蜡油中,制备成含不同质量分数KH-MoS_2的润滑油样;然后,分别在单向和双向滑动模式下,采用球盘摩擦磨损试验机测试含不同质量分数KH-MoS_2纳米片的润滑油样的摩擦学性能;最后,通过对比分析对摩钢球的磨斑和对偶盘磨痕表面,探究了滑动模式对含有KH-MoS_2纳米片的润滑油样的摩擦学性能的影响。根据摩擦试验结果,建立了单向和双向滑动模式的润滑机理模型,研究了单向和双向滑动模式下含有KH-MoS_2纳米片的润滑油样的减摩抗磨机理。结果表明,在单向和双向滑动模式下,摩擦系数均随润滑油样中KH-MoS_2质量分数的增加而减小。在石蜡油中添加质量分数1%的KH-MoS_2时,双向滑动模式下获得最优摩擦系数可低至0.075,比同等滑动模式下使用纯石蜡油油样润滑时的摩擦系数低约53.4%,比单向滑动模式下使用同一油样润滑时的摩擦系数低约25%。  相似文献   

20.
制备了硬脂酸修饰的复合 SiO2-Zn(OH)2微粒,采用四球摩擦磨损试验机考察了其作为润滑油添加剂的摩擦学特性,并用扫描电子显微镜、红外光谱仪和X射线光电子能谱仪对微粒结构和磨损表面进行了表面分析.结果表明:该复合微粒粒径均匀一致;表面修饰剂硬脂酸与复合微粒之间存在化学键;复合微粒中 Zn(OH)2和 SiO2之间发生了相互作用,从而使Zn原子的结合能增大;添加 0.125%表面修饰 SiO2-Zn(OH)2在较低载荷下即可显著提高润滑油的抗磨损性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号