首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
为了研究土拱效应对挡墙主动土压力非线性分布的影响,运用细观颗粒流方法研究挡墙绕墙顶部转动主动土压力分布和墙后土拱效应细观形成机理,提出跨高比和矢高比表征土拱曲线.研究结果表明:跨高比和矢高比越大,则土拱效应越明显;细观颗粒流方法能够较好地模拟挡墙绕墙顶转动主动土压力分布;当挡墙绕墙顶转动、挡墙位移小于0.05H(H为墙高)时,沿墙高到墙顶0.4H范围内土拱效应较明显,主动土压力呈显著非线性分布;在其他位移模式和位移情况下土拱效应不明显,计算挡墙绕墙顶转动土压力时应考虑土拱效应的影响;若土颗粒和墙体摩擦因素越大,土颗粒刚度越小,则土拱效应越显著.  相似文献   

2.
借助有限差分软件FLAC~(3D),依托太原地铁2号线双塔西街—大南门站下穿迎泽湖区段盾构隧道工程,基于流-固耦合理论分别建立5,10,20,30 m湖水深度下该区段隧道流-固耦合三维计算模型,对比分析4种湖水深度下盾构隧道开挖过程中地表的沉降量、围岩渗透性和管片内力分布。结果表明:盾构隧道地表沉降量及水平位移随湖水深度的增大而增大;各工况下隧道周围的孔隙水压力随着盾构隧道的开挖而显著减小,水力坡降在隧道拱顶、拱腰两侧明显增大,致使隧道拱顶、拱腰两侧极易发生涌水事故;流-固耦合作用下,盾构管片内力与水头压力呈正相关性,盾构隧道管片配筋设计中应考虑上覆水体水头压力对其产生的显著影响。  相似文献   

3.
基于流固耦合的泥水盾构隧道施工引发地表变形   总被引:2,自引:0,他引:2  
利用泥水盾构隧道开挖面平衡稳定原理,对泥水介质渗透的微观机理进行分析.同时,以具体工程为研究对象,结合流固耦合基本原理对由于开挖面泥水渗流所引起的隧道开挖位移场进行计算分析.研究结果表明:泥水介质向开挖面前方土体渗流时,将引起隧道地表附加沉降,且泥水压力大于主动土压力时,泥水压力越大,附加沉降量越大,但总沉降量越小;泥膜渗透系数越小、泥膜厚度越大附加沉降越小;适当增加施工进度有助于减少附加沉降.因此,在高渗透性地层条件下采用泥水盾构施工时,应确保泥水介质的质量,适当提高施工进度,尽量减少泥水渗透对开挖面稳定性及地表变形的小利影响.  相似文献   

4.
为研究土拱效应下挡土墙后砂土的主动土压力,考虑墙土摩擦角对土体滑裂面倾角的影响,对圆弧形的小主应力拱进行理论分析,计算得到不同深度处的土拱微分体水平宽度及小主应力拱形状表达式。根据所得的拱形状,提出沿小主应力拱轴方向划分微分单元体的拱弧微分单元法,并将其用于求解挡土墙主动土压力,得到了挡土墙主动土压力的理论公式。与试验数据及其他理论方法的比较表明该方法所得理论公式与模型试验结果吻合得较好。  相似文献   

5.
利用土拱理论和有限元方法,对上埋式盖板涵洞顶部土压力的转移、减小进行研究和计算。结果表明,刚性地基条件下,在盖板式涵洞顶部两侧设置的减载块-混凝土块体充当支撑拱脚,产生的土拱效应大大减小了涵洞顶板的土压力。减载块高度、宽度以及减载块间填土的密实度对顶板土压力的减小有很大影响,三者均可使顶板土压力减小20%~30%以上。  相似文献   

6.
从西安地铁1 #线工程背景和西安地裂缝地质环境出发,根据相似理论设计了盾构隧道管片衬砌结构30°斜穿地裂缝的物理模型试验管片混凝土应变、纵向和环向螺栓应变、结构接触土压力外围土压力、结构内部收敛位移、模型顶表面土体变形以及宏观变形破坏现象表明:盾构隧道管片衬砌结构30°斜穿地裂缝的变形破坏模式为剪切变形为主,局部有扭转变形;结构破坏范围为上盘1.25D,下盘0.75D(D为管片环外径);管片衬砌结构变形破坏不对称,管片环向处于偏压状态;环缝拱底位错量大于拱顶和拱腰,拱底最大位错量达40 mm(0.033D),模型难以适用地裂缝错动变形20 cm(0.1667 D),盾构管片衬砌结构不适用于地裂缝活动强烈的地质环境  相似文献   

7.
受地形、填料物理力学参数、结构尺寸等多种因素的影响,沟谷地形高填方涵洞受力计算较为复杂,相关理论研究尚不成熟.以某一高填方涵洞项目为依托,通过数值模拟得出:在一定条件下,涵洞两侧边坡阻碍了沟内填土的沉降,土中主应力方向发生调整,从而产生土拱效应.在数值模拟的基础上,运用小主应力拱概念,推导出了沟内黏性填土产生土拱效应时的侧压力系数与沟谷地形高填方涵洞竖向土压力理论公式.各种结果对比可见:所提公式计算结果与现场实测结果以及数值模拟结果相吻合;沟谷地形涵洞上方填土中产生土拱效应时,涵洞竖向土压力随着填土高度的增加非线性增大,增速逐渐减小.  相似文献   

8.
落水洞上覆路堤土工加筋设计新方法   总被引:1,自引:0,他引:1  
为了改变由于土工织物的存在抑制了落水洞上覆路堤土不均匀变形,使得路堤中的土拱效应和剪应力不能完全发展的问题,提出了基于不完全发展的土拱效应的设计方法.首先根据Handy的土拱为最小主应力拱的假设,利用摩尔圆推导出了在土工织物不同挠曲变形时土中剪应力的计算方法.然后将其与土拱效应的计算理论相结合提出了不完全发展的土拱效应计算公式.最后考虑不同的填土高度,以不完全发展的土拱效应计算理论为基础得到土拱高度确定方法.利用数值分析和本文方法以及现有的设计方法分别计算同一算例,结果表明,所提出的方法与数值分析计算结果更为接近.这证明在用土工织物加固落水洞上覆路堤时考虑土中剪应力的不完全发展更符合工程的实际情况.  相似文献   

9.
刚性挡土墙后土体在墙土间摩擦力作用下主应力会发生一定程度偏转,即土拱效应现象,使得土压力呈非线性分布。为考虑土拱效应对主动土压力分布的影响,基于水平微分土层法,假设墙后土体主应力偏转迹线呈抛物线形,定义水平微分土层侧压力系数,建立并求解水平微分土层平衡方程,获得主动土压力强度分布函数,进而求取主动土压力合力数值及其作用点位置表达式。研究结果表明:随着δ/φ逐渐增大,土拱效应逐渐增强,主动土压力呈非线性分布,由上至下先增大后减小;合力作用点高度与δ和φ之间均呈正相关关系,随着土拱效应的增强而升高;与模型试验及现有理论解析模型对比表明,关于主动土压力分布和合力作用点高度的计算误差最小,证明了方法的准确性和适用性。  相似文献   

10.
水平推力作用下抗滑桩间土拱效应影响因素的数值分析   总被引:2,自引:0,他引:2  
利用FLAC3D软件对抗滑桩后土体的应力拱产生过程和形成机理进行三维数值分析,并通过一系列的对比计算,研究桩间距、土体性质(包括士体的内摩擦角、黏聚力、弹性模量、泊松比、膨胀角)以及桩土接触面性质等因素对土拱效应的影响.研究结果表明:随着抗滑桩桩间距的增大,土拱范围变小,土拱形状也由拱形发展到扁平抛物线形,桩的荷载分担比降低.土体内摩擦角、土体黏聚力以及桩土之间的相对弹性模量对土拱效应的影响呈正相关关系,而土体的泊松比对桩后土拱范围的影响呈反比关系,土体的膨胀角对土拱效应影响不太明显;随着桩土接触面粗糙程度的增加,桩后土拱的范围增大,土拱效应也越显著.  相似文献   

11.
膜土联合防渗系统对高土石坝心墙拱效应的影响   总被引:1,自引:0,他引:1  
以四川瀑布沟心墙土石坝为例,应用FLAC3D软件建立高土石坝的三维模型并对高土石坝的应力应变和渗流进行了数值模拟,同时将此数值模拟结果与其他文献中的计算结果进行了对比.结果表明:高土石坝中心墙处会出现拱效应现象;土工膜与土心墙组成的联合防渗系统可大大降低心墙浸润面,有效削弱心墙拱效应,完全消除心墙大主应力小于同高程渗透水压力的现象,从而提高防渗心墙的安全性.  相似文献   

12.
为研究复杂软土场地中盾构隧道的地震响应,以天津Z2线一期工程为例,结合地质勘察报告和地震安全性评价报告,建立复杂软土场地中盾构隧道横断面抗震计算的ABAQUS模型,并编制了用于土体材料参数非线性迭代的Python程序.计算模型边界采用黏弹性边界,地震动采用等效结点力的形式输入,土体材料的非线性采用等价线性方法考虑,混凝土材料采用塑性损伤模型.计算并提取了隧道管片弯矩最大时刻对应的管片内力,分析了安评地震波作用下的盾构管片横截面内力响应特征.研究表明,小震和中震作用下管片受到的静力荷载起主要控制作用,大震的地震作用对管片内力分布形式具有较大的影响;初始地应力对盾构管片内力大小和分布具有重要影响;在初始地应力和地震联合作用下,盾构管片的最大正弯矩出现在拱底邻近位置,最大负弯矩出现在两侧拱腰邻近位置;盾构管片设计时应当加强对两侧拱腰、拱顶和拱底的构造措施.  相似文献   

13.
大断面深埋高水压盾构隧道实测内力反算与分析   总被引:1,自引:1,他引:0  
结合南京地铁3号线大直径盾构隧道工程,对隧道管片钢筋应变进行了现场测试,基于既有的管片内力反算方法,考虑混凝土非线性性质及管片接头,提出了适用于深埋高水压盾构隧道的内力改进算法,并对改进算法反算内力与结构设计计算内力进行了对比分析.结果表明:改进算法更能反映管片的实际受力状态,更适用于荷载模式复杂且接头传力机制多变的大断面深埋高水压盾构隧道;采用设计方法计算的深埋高水压盾构隧道管片及接头内力与改进算法反算内力的分布规律基本一致,但在量值上具有一定的差异;采用设计方法计算的管片及接头轴力为改进算法反算轴力的1/2左右,反算的管片弯矩在拱底位置与惯用法计算弯矩接近,在拱腰及拱顶位置与梁-弹簧法更为接近,反算的接头弯矩大于梁-弹簧模型计算接头弯矩.研究成果可为大直径深埋盾构隧道设计提供参考.  相似文献   

14.
为探明黄土地层中地铁盾构隧道施工对地层的扰动以及管片衬砌结构承受荷载的特征,依托西安地铁2号线穿越黄土地层盾构隧道工程,采用颗粒离散元方法从细观层面对盾构施工引起的地层应力变化及开挖面失稳形态进行模拟分析,同时对实际作用在管片衬砌结构上的土压力和主体结构内力(轴力、弯矩)进行现场动态跟踪测试,分析盾构动态施工过程及后期稳定后的土压力对管片衬砌结构受力的影响.研究结果表明:临空面的产生导致隧道拱顶及两侧部分水平应力和垂直应力发生显著变化.管片衬砌结构内力受施工参数影响明显,尤其是千斤顶推力和注浆压力.  相似文献   

15.
基于颗粒流理论,采用PFC2D程序对抗滑桩加固的松散体滑坡成桩后的土拱形成、发展及破坏过程进行研究,分析细观因素(摩擦系数和孔隙率)对抗滑桩土拱效应的影响.结果表明:抗滑桩第1次产生的土拱效应承担极限承载力;土拱破坏后,后续产生的土拱效应承担残余承载力,残余承载力虽有波动但变化不大;桩间土拱的极限承载力、残余承载力和桩体最大荷载分担比随着抗滑桩的桩间净距离增大而减小,随着桩宽增加而增大,但其变化关系并非简单的线性关系;在一定范围内,摩擦系数对抗滑桩土拱效应的影响较大,土体摩擦系数越大,土拱效应越明显,土拱极限承载力越大,且桩体最大荷载分担比呈增长趋势;颗粒集合体的孔隙率对抗滑桩成拱的影响显著,密实度低的松散体的土拱极限承载力相当于密实度高的松散体的残余承载力.  相似文献   

16.
本文依托苏州地铁S1线某区间盾构隧道,针对后期沿线可能出现的堆载问题,采用地层-结构法建立精细化三维数值分析模型,系统地探究了堆载条件下,隧道上覆、穿越和下卧软土地层对盾构管片变形的影响规律。结果表明:在地面堆载作用下,上覆荷载经过土层扩散,使管片变形沿纵向呈“正态分布”,竖向变形最大处位于堆载位置正下方的拱顶处;隧道最大水平位移发生在荷载作用位置正下方管片的左右拱腰处,并且左右拱腰同时产生向外的水平位移;当堆载中心在隧道正上方时,隧道下卧软土层时隧道变形量最大,其次是隧道穿越软土层时,隧道上覆软土层时对隧道竖向变形影响最小;隧道下卧土层的弹性模量对隧道结构变形影响最大,且弹性模量越小,结构变形越明显。  相似文献   

17.
 基于有效应力分析法,运用有限差分程序FLAC3D建立了盾构隧道主隧道、联络通道、地层相互作用三维计算模型。分析了两辆列车单次交汇运营条件下,联络通道与隧道结构连接处典型断面特征点处土层孔隙水压力、盾构隧道衬砌结构变形及主应力变化。计算结果表明:在列车振动荷载作用下离隧道拱底越近的土层,孔隙水压力与初始有效应力的比值越大,但均小于1,土体尚未达到发生液化的条件;衬砌结构位移最大值出现在盾构隧道拱底,为0.16mm;衬砌结构拉、压应力最大值均未超过结构抗拉、抗压强度设计值,表明衬砌结构在列车振动荷载作用下是安全的。  相似文献   

18.
刘长春  刘德稳 《科学技术与工程》2020,20(26):10871-10874
现行考虑土拱效应的挡土墙主动土压力方法未考虑中主应力的影响,不能全面的反映土体的三维受力特性对挡土墙主动土压力的影响。本文根据空间滑动面准则(SMP准则),推导了考虑中主应力影响的侧向主动土压力系数公式及主动土压力分布公式。结果表明:考虑中主应力的SMP准则计算的主动土压力较Mohr-coulomb计算的结果小一些,更接近试验结果。因而,在考虑土拱效应计算挡土墙主动土压力时,考虑中主应力发挥土体的材料强度潜力,对于工程有一定的意义。  相似文献   

19.
盾尾密封对盾构周边渗流场及正面稳定的影响   总被引:2,自引:0,他引:2  
基于地下渗流基本方程,采用有限差分法对江底隧道盾构施工中产生的周边渗透力进行了分析,并推导了渗流条件下盾构正面稳定的判别公式.分析表明:隧道开挖后,隧道周边土层的孔隙水压力将重新分布,开挖面附近孔隙水压力等值线呈楔形体,隧道开挖面上孔隙水压力变化达到最大;而开挖面附近的总水头等值线围绕开挖面呈环形分布,渗透力的最大值出现在开挖面上及盾尾透水处.土中渗透力使隧道开挖面稳定性系数减小,但盾构压力舱内的泥水压力有利于隧道正面的稳定.分析还表明,如果盾构掘进过程中盾尾有透水现象,则整个盾构机将处于水头产生较大变化的范围之内,会导致极其严重的后果.  相似文献   

20.
为揭示跨隐伏断层地铁盾构隧道结构变形破坏特征,采用自主设计的模拟隐伏断层错动加载试验装置,开展1∶25几何比例的跨断层盾构隧道模型试验,分析正断层错动下盾构隧道的力学响应规律及变形破坏特征.试验结果表明:在2 cm正断层错动影响下,隧道纵向差异变形呈现非线性增大趋势,环缝接头张开变形主要位于断层下盘隧道拱顶及断层上盘隧道拱底,且环缝峰值张开量已超过盾构隧道接缝防水限值;断层延长线与隧道交界处管片直径收敛变形较为严重,该处管片呈现拱腰外侧受拉、拱顶及拱底外侧受压的受力状态;管片与地层之间接触压力受断层错动的影响较大,存在围岩挤压区与围岩松散区,但接触压力峰值相对较小;盾构隧道的主要变形破坏特征为环缝接头拉裂破损、管片纵向开裂及环缝接头变形,管片发生斜向剪切破坏及局部压溃破坏的概率较低.基于盾构隧道环纵向变形破坏特征,建议将管片环缝变形及接头混凝土拉裂破损作为界定跨断层盾构隧道结构破坏的主要控制指标.基于隧道的变形破坏模式,提出了跨断层盾构隧道结构设计及应对措施的建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号