首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main topics of this second part of a two-part essay are some consequences of the phenomenon of vacuum polarization as the most important physical manifestation of modular localization. Besides philosophically unexpected consequences, it has led to a new constructive “outside-inwards approach” in which the pointlike fields and the compactly localized operator algebras which they generate only appear from intersecting much simpler algebras localized in noncompact wedge regions whose generators have extremely mild almost free field behavior.Another consequence of vacuum polarization presented in this essay is the localization entropy near a causal horizon which follows a logarithmically modified area law in which a dimensionless area (the area divided by the square of dR where dR is the thickness of a light-sheet) appears. There are arguments that this logarithmically modified area law corresponds to the volume law of the standard heat bath thermal behavior. We also explain the symmetry enhancing effect of holographic projections onto the causal horizon of a region and show that the resulting infinite dimensional symmetry groups contain the Bondi–Metzner–Sachs group. This essay is the second part of a partitioned longer paper.  相似文献   

2.
The recent discovery of the Higgs at 125 GeV by the ATLAS and CMS experiments at the LHC has put significant pressure on a principle which has guided much theorizing in high energy physics over the last 40 years, the principle of naturalness. In this paper, I provide an explication of the conceptual foundations and physical significance of the naturalness principle. I argue that the naturalness principle is well-grounded both empirically and in the theoretical structure of effective field theories, and that it was reasonable for physicists to endorse it. Its possible failure to be realized in nature, as suggested by recent LHC data, thus represents an empirical challenge to certain foundational aspects of our understanding of QFT. In particular, I argue that its failure would undermine one class of recent proposals which claim that QFT provides us with a picture of the world as being structured into quasi-autonomous physical domains.  相似文献   

3.
Duality, the equivalence between seemingly distinct quantum systems, is a curious property that has been known for at least three quarters of a century. In the past two decades it has played a central role in mapping out the structure of theoretical physics. I discuss the unexpected connections that have been revealed among quantum field theories and string theories. Written for a special issue of Studies in History and Philosophy of Modern Physics.  相似文献   

4.
This paper investigates the significance of T-duality in string theory: the indistinguishability with respect to all observables, of models attributing radically different radii to space—larger than the observable universe, or far smaller than the Planck length, say. Two interpretational branch points are identified and discussed. First, whether duals are physically equivalent or not: by considering a duality of the familiar simple harmonic oscillator, I argue that they are. Unlike the oscillator, there are no measurements ‘outside’ string theory that could distinguish the duals. Second, whether duals agree or disagree on the radius of ‘target space’, the space in which strings evolve according to string theory. I argue for the latter position, because the alternative leaves it unknown what the radius is. Since duals are physically equivalent yet disagree on the radius of target space, it follows that the radius is indeterminate between them. Using an analysis of Brandenberger and Vafa (1989), I explain why—even so—space is observed to have a determinate, large radius. The conclusion is that observed, ‘phenomenal’ space is not target space, since a space cannot have both a determinate and indeterminate radius: instead phenomenal space must be a higher-level phenomenon, not fundamental.  相似文献   

5.
The view that the fundamental kind properties are intrinsic properties enjoys reflexive endorsement by most metaphysicians of science. But ontic structural realists deny that there are any fundamental intrinsic properties at all. Given that structuralists distrust intuition as a guide to truth, and given that we currently lack a fundamental physical theory that we could consult instead to order settle the issue, it might seem as if there is simply nowhere for this debate to go at present. However, I will argue that there exists an as-yet untapped resource for arguing for ontic structuralism – namely, the way that fundamentality is conceptualized in our most fundamental physical frameworks. By arguing that physical objects must be subject to the ‘Goldilock's principle’ if they are to count as fundamental at all, I argue that we can no longer view the majority of properties defining them as intrinsic. As such, ontic structural realism can be regarded as the most promising metaphysics for fundamental physics, and that this is so even though we do not yet claim to know precisely what that fundamental physics is.  相似文献   

6.
This paper places Julian Schwinger׳s development of the Euclidean Green׳s function formalism for quantum field theory in historical context. It traces the techniques employed in the formalism back to Schwinger׳s work on waveguides during World War II, and his subsequent formulation of the Minkowski space Green׳s function formalism for quantum field theory in 1951. Particular attention is dedicated to understanding Schwinger׳s physical motivation for pursuing the Euclidean extension of this formalism in 1958.  相似文献   

7.
The symmetries of a physical theory are often associated with two things: conservation laws (via e.g. Noether׳s and Schur׳s theorems) and representational redundancies (“gauge symmetry”). But how can a physical theory׳s symmetries give rise to interesting (in the sense of non-trivial) conservation laws, if symmetries are transformations that correspond to no genuine physical difference? In this paper, I argue for a disambiguation in the notion of symmetry. The central distinction is between what I call “analytic” and “synthetic“ symmetries, so called because of an analogy with analytic and synthetic propositions. “Analytic“ symmetries are the turning of idle wheels in a theory׳s formalism, and correspond to no physical change; “synthetic“ symmetries cover all the rest. I argue that analytic symmetries are distinguished because they act as fixed points or constraints in any interpretation of a theory, and as such are akin to Poincaré׳s conventions or Reichenbach׳s ‘axioms of co-ordination’, or ‘relativized constitutive a priori principles’.  相似文献   

8.
We present the fractional quantum Hall (FQH) effect as a candidate emergent phenomenon. Unlike some other putative cases of condensed matter emergence (such as thermal phase transitions), the FQH effect is not based on symmetry breaking. Instead FQH states are part of a distinct class of ordered matter that is defined topologically. Topologically ordered states result from complex long-ranged correlations between their constituent parts, such that the system displays strongly irreducible, qualitatively novel properties.  相似文献   

9.
The application of analytic continuation in quantum field theory (QFT) is juxtaposed to T-duality and mirror symmetry in string theory. Analytic continuation—a mathematical transformation that takes the time variable t to negative imaginary time—it—was initially used as a mathematical technique for solving perturbative Feynman diagrams, and was subsequently the basis for the Euclidean approaches within mainstream QFT (e.g., Wilsonian renormalization group methods, lattice gauge theories) and the Euclidean field theory program for rigorously constructing non-perturbative models of interacting QFTs. A crucial difference between theories related by duality transformations and those related by analytic continuation is that the former are judged to be physically equivalent while the latter are regarded as physically inequivalent. There are other similarities between the two cases that make comparing and contrasting them a useful exercise for clarifying the type of argument that is needed to support the conclusion that dual theories are physically equivalent. In particular, T-duality and analytic continuation in QFT share the criterion for predictive equivalence that two theories agree on the complete set of expectation values and the mass spectra and the criterion for formal equivalence that there is a “translation manual” between the physically significant algebras of observables and sets of states in the two theories. The analytic continuation case study illustrates how predictive and formal equivalence are compatible with physical inequivalence, but not in the manner of standard underdetermination cases. Arguments for the physical equivalence of dual theories must cite considerations beyond predictive and formal equivalence. The analytic continuation case study is an instance of the strategy of developing a physical theory by extending the formal or mathematical equivalence with another physical theory as far as possible. That this strategy has resulted in developments in pure mathematics as well as theoretical physics is another feature that this case study has in common with dualities in string theory.  相似文献   

10.
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computational quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.  相似文献   

11.
S-dualities have been held to have radical implications for our metaphysics of fundamentality. In particular, it has been claimed that they make the fundamentality status of a physical object theory-relative in an important new way. But what physicists have had to say on the issue has not been clear or consistent, and in particular seems to be ambiguous between whether S-dualities demand an anti-realist interpretation of fundamentality talk or merely a revised realism. This paper is an attempt to bring some clarity to the matter. After showing that even antecedently familiar fundamentality claims are true only relative to a raft of metaphysical, physical, and mathematical assumptions, I argue that the relativity of fundamentality inherent in S-duality nevertheless represents something new, and that part of the reason for this is that it has both realist and anti-realist implications for fundamentality talk. I close by discussing the broader significance that S-dualities have for structuralist metaphysics and for fundamentality metaphysics more generally.  相似文献   

12.
No-go theorems are known in the literature to the effect that, in relativistic quantum field theory, particle localizability in the strict sense violates relativistic causality. In order to account for particle phenomenology without particle ontology, Halvorson and Clifton (2002) proposed an approximate localization scheme. In a recent paper, Arageorgis and Stergiou (2013) proved a no-go result that suggests that, even within such a scheme, there would arise act–outcome correlations over the entire spacetime, thereby violating relativistic causality. Here, we show that this conclusion is untenable. In particular, we argue that one can recover particle phenomenology without having to give up relativistic causality.  相似文献   

13.
Sidney Dancoff׳s paper “On Radiative Corrections for Electron Scattering” is generally viewed in the secondary literature as a failed attempt to develop renormalized quantum electrodynamics (QED) a decade early, an attempt that failed because of a mistake that Dancoff made. I will discuss Dancoff׳s mistake and try to reconstruct why it occurred, by relating it to the usual practices of the quantum field theory of his time. I will also argue against the view that Dancoff was on the verge of developing renormalized QED and will highlight the conceptual divides that separate Dancoff׳s work from the QED of the late 1940s. I will finally discuss how the established view of Dancoff׳s paper came to be and how the reading of this specific anecdote relates to more general assessments of the conceptual advances of the late 1940s (covariant techniques, renormalization), in particular to their assessment as being conservative rather than revolutionary.  相似文献   

14.
We call attention to the historical fact that the meaning of symmetry in antiquity—as it appears in Vitruvius’s De architectura—is entirely different from the modern concept. This leads us to the question, what is the evidence for the changes in the meaning of the term symmetry, and what were the different meanings attached to it? We show that the meaning of the term in an aesthetic sense gradually shifted in the context of architecture before the image of the balance was attached to the term in the middle of the 18th century and well before the first modern scientific usage by Legendre in 1794.  相似文献   

15.
The calculus that co-evolved with classical mechanics relied on definitions of functions and differentials that accommodated physical intuitions. In the early nineteenth century mathematicians began the rigorous reformulation of calculus and eventually succeeded in putting almost all of mathematics on a set-theoretic foundation. Physicists traditionally ignore this rigorous mathematics. Physicists often rely on a posteriori math, a practice of using physical considerations to determine mathematical formulations. This is illustrated by examples from classical and quantum physics. A justification of such practice stems from a consideration of the role of phenomenological theories in classical physics and effective theories in contemporary physics. This relates to the larger question of how physical theories should be interpreted.  相似文献   

16.
In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in science, but debates over its ontology are vexed. Rather than taking a stand on these matters, the structural realist can embrace QFT as an example of just the kind of theory SR should lead us to expect. Yet, it is not clear that QFT meets the structuralist's positive expectation by providing a structure for the world. In particular, the problem of unitarily inequivalent representations threatens to undermine the possibility of QFT providing a unique structure for the world. In response to this problem, I suggest that the structuralist should endorse pluralism about structure.  相似文献   

17.
Baker (2011) argues that broken symmetries pose a number of puzzles for the interpretation of quantum theories—puzzles which he claims do not arise in classical theories. I provide examples of classical cases of symmetry breaking and show that they have precisely the same features that Baker finds puzzling in quantum theories. To the extent that Baker is correct that the classical cases pose no puzzles, the features of the quantum case that Baker highlights should not be puzzling either.  相似文献   

18.
19.
One of the key philosophical questions regarding quantum field theory is whether it should be given a particle or field interpretation. The particle interpretation of QFT is commonly viewed as being undermined by the well-known no-go results, such as the Malament, Reeh-Schlieder and Hegerfeldt theorems. These theorems all focus on the localizability problem within the relativistic framework. In this paper I would like to go back to the basics and ask the simple-minded question of how the notion of quanta appears in the standard procedure of field quantization, starting with the elementary case of the finite numbers of harmonic oscillators, and proceeding to the more realistic scenario of continuous fields with infinitely many degrees of freedom. I will try to argue that the way the standard formalism introduces the talk of field quanta does not justify treating them as particle-like objects with well-defined properties.  相似文献   

20.
I propose a general geometric framework in which to discuss the existence of time observables. This framework allows one to describe a local sense in which time observables always exist, and a global sense in which they can sometimes exist subject to a restriction on the vector fields that they generate. Pauli׳s prohibition on quantum time observables is derived as a corollary to this result. I will then discuss how time observables can be regained in modest extensions of quantum theory beyond its standard formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号