首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设A是一个n阶的任意复矩阵且E是A的Hermite秩1扰动,即E=xx',其中x是n维的复列向量,x'是x的共轭转置向量.则A+E为矩阵A的Hermite秩1修正矩阵.基于矩阵分析理论中Hermite矩阵特征值分布的性质,研究得到了矩阵A特征值的任意Hermite秩1修正扰动的上下界限,即给出了矩阵A+E特征值的上下界限:λ_i(H(A))+l_i(x)+δ_i≤R(λ_i(A+xx'))≤λ_i(H(A))+u_i(x)+δ'_i(i=1,n),λ_i(H(A))+l_i(x)+δ_i≤R(λ_i(A+xx'))≤min{λ_i(H(A))+u_i(x),λ_(i-1)(H(A))}+δ'_i(2≤i≤n-1),且λ_(min)(-SH(A)τ)≤S(λ_i(A+xx'))≤λ_(max)(-SH(A)τ)(1≤i≤n),其中δ_i=sgn(‖SH(A)‖_2)[λ_(min)(H(A))-λ_(i-1)(H(A))-u_i(x)],δ'_i=sgn(‖SH(A)‖_2)[λ_(max)(H(A))-λ_i(H(A))-l_i(x)+‖x‖_2~2],gap_i=λ_(i-1)(A)-λ_i(A),i=2,…,n,H(A)和SH(A)分别代表矩阵A的Hermite部分和反Hermite部分,τ=(-1)~(1/2),sgn(·)代表符号函数.当A为Hermite矩阵时,上述结果退化为已有的结果λ_i(A)-‖x‖_2~2≤R(λ_i(A+xx'))≤λ_i(A)+‖x‖_2~2.  相似文献   

2.
为求解方程f(x)=0,我们提出了下列二种迭代程序:x_n~(1)=ω(x_(n-1)~((m-1)),x_(n-1)~(m),x_(n-1)~(m)),x_n~(2)=ω(x_(n-1)~((m-1)),x_(n-1)~(m),x_m~(1)),x_n~(3)=ω(x_(n-1)~((m-1)),x_(n-1)~(m),x_n~(2),x_n~(m)=ω(x_(n-1)~((m-1)),x_(n-1)~(m),x_n~((m-1))),(?)n∈N_0和z_(n 1)=ω(x_n,y_n,x_n),y_(n 1)=ω(x_n,z_(n 1),z_(n 1)),x_(n 1)=ω(x_n,z_(n 1),y_(n 1)),其中ω(x,y,z)=z-f(z)/f(x,y),f(x,y)=f(x)-f(y)/(x-y),它们的收敛阶分别为m (m~2 4)~(1/2)/2和2 3~(1/2)。本文分别建立了程序(I_m)和程序(Ⅱ)的收敛性定理,并就两个定理作了六点注记。文中还给出了一个数值例子  相似文献   

3.
研究了高阶摄动波动方程ttu+(-Δ)mu+V(x)u=0,u(x,0)=0,tu(x,0)=f(x),x∈Rn,n>3m,解的Lp-Lp′估计.在摄动和始值f(x)为紧支且V(x)充分小的假定下,得到了该问题解的Lp-Lp′估计:‖u(*,t)‖p′≤Ct-d‖f‖p,t>0,其中 m>1,d=n/m(1/p-1/p′)-1,1/p+1/p′=1,m/(2n)<1/p-1/2相似文献   

4.
对于正态线性试验NL(Xβ,δ~2V),V为已知κ×n阶正定矩阵,δ~2为未知正参数,通过容许性理论,在平方损失函数(δ~2+β~rX~rV~(-1)Xβ)~(-1)‖δ-SXβ‖下,本文证明了SXβ的线性估计是所有估计类中一致最小最大估计。  相似文献   

5.
利用一致凸Banach空间中凸性模的大小与其特征不等式的等价关系 ,即当 p≥ 2时 ,Banach空间X是一致凸的 ,并且 ,当且仅当X中的范数满足不等式‖ (1-t)x +ty‖ p+cw(t)‖x - y‖ p≤ (1-t)‖x‖ p+t‖y‖ p 时 ,其凸性模δX(ε)≥cεp(0 <ε <2 ,0 相似文献   

6.
考虑以下问题:问题1:给定A∈Rm×n,B∈Rm×l,C∈Rm×m,L={(X,Y)|AXAT BYBT=C,X∈SRn×n,Y∈SRl×l}≠φ,找(X⌒,Y⌒)∈L,使得‖(X⌒,Y⌒)‖=(‖X‖2 ‖Y‖2)(1)/(2)=min.问题2:任意给定(X∧)∈Rn×n,(Y∧)∈Rl×l,找(X∧,Y∧)∈L,使得‖(X∧)-(X~)‖2 ‖(Y∧)-(Y~)‖2=min(X,Y)∈L(‖X-(X~)‖2 ‖Y-(Y~)‖2).讨论了矩阵方程AXAT BYBT=C有解的充要条件,得到了L的具体表达式,给出了问题1与问题2的唯一解证明与显式表示.  相似文献   

7.
研究了LP(μ,X)中的复一致凸和复局部一致凸性,得出了比Orlicz空间更强的结论.即:LP(μ,X)复一致凸的充要条件是X复一致凸;LP(μ,X)复局部一致凸的充要条件是对任意的x∈S(LP(μ,X))和ε&gt;0,存在δ&gt;0,对任意y∈LP(μ,X),‖y|A(x,y,δ)‖=(∫A(x,y,δ)‖y(ω)‖^pdy)^1/p≤ε/3(1≤p≤+∞),A(x,y,δ)={ω∈Ω:1/4∑(K)‖x(ω)+ky(ω)‖≤(1+δ)‖x(ω)‖}.  相似文献   

8.
定义了一种新的K-泛函:K(f,t)n∞=infg∈C2[0,1]{‖f-g‖n∞+t‖δ2ng″‖n∞+t‖g′‖n∞},其中‖f‖n∞=supx∈[0,1]|δ-βn(x)f(x)|,0≤β≤2,δ2n(x)=φ2(x)+(1)/(n),φ(x)=x(1-x).利用此K -泛函给出了Bernstein-Kantorovich算子点态逼近的强逆不等式,即若f∈C[0,1],β=α(1-λ),0<α≤2,0≤λ≤1,则(A)x∈[0,1],及(A)h∈(0,(1)/(4)),都存在正整数n及m满足|(Δ)2hφλ f(x)|≤Chαnα/2{‖Knf-f‖n∞+‖Kmnf-f‖n∞}.  相似文献   

9.
矩阵的谱条件数等于1的充要条件   总被引:3,自引:1,他引:2  
本文分别给出了矩阵的两种谱条件数等于1的充学条件:1.非异矩阵A的求逆条件数x(A)=‖A‖2‖A~(-1)‖2,x(A)=1的充要条件是,A为某个酉阵的非零常数倍。 2.任给方阵A,■称为A的特征值谱条件数,这里V是将A相似变换成约当标准形的非异矩阵集合。f(A)=1的充要条件是,存在酉矩阵R,使等式R~BAR=J_A。其中J_A为A的约当标准形。  相似文献   

10.
本文讨论二次系统(dx)/(dt)=-y-mx lx~2 mxy y~2,(dy)/(dt)=x(1 ax)在条件l=(m(m-2a))/4(具有对称中心,两个细鞍点)下,轨线的全局结构和(a,m)参数平面上的分歧曲线。证明了使鞍点的某些分界线重合的,(a,m)平面上分歧曲线c_1,c_2,c_3的存在唯一性,入而确定了相应的全局结构。 容易验证系统 (dx)/(dt)=-y_δx lx~2 mxy ny~2,(dy)/(dt)=x(1 ax)具有对称中心,细鞍点的充要条件是: δ=-m,l=(1/4)m(m-2a),n≠0(不妨设n=1)本文就是研究这类系统 (dx)/(dt)=-y-mx (1/4)m(m-2a)x~2 mxy y~2=P(x,y), (dy)/(dt)=x(1 ax)=Q(x,y)且不妨设a<0。  相似文献   

11.
设P是实Banach空间E的一个锥 ,f是PR 到P的一个 1-集压缩映射 ,且对PR中任一序列 {xn} ,若limn→∞(xn-f(xn) ) =θ,则存在u∈PR,使得u -f(u) =θ.那么当对任意满足‖f(x)‖ >R的x∈ PR,存在y∈IpR(x) ,使‖y-f(x)‖<‖x-f(x)‖ ,或都有‖f(x) -x‖≠‖f(x)‖ -R ,或存在 1<α <+∞ ,使‖f(x)‖α-Rα≤‖f(x) -x‖α,或存在 0<β<1,使‖f(x)‖β-Rβ≥‖f(x) -x‖β,或对任意 0 <λ<1,都有x≠λf(x)时 ,f在PR 中有一个不动点 .通过以上结论的给出 ,解决了一类微积分方程的解的存在性 .  相似文献   

12.
运用能量方法证明了如下非线性Schr dinger方程组Cauchy问题iut=Δu+|v|2u,x∈Rn,t>0,ivt=Δv+|u|2v,x∈Rn,t>0,u(x,0)=φ(x),v(x,0)=ψ(x)存在有限时间T,使得当t→T-时‖gradu(t)‖L2(Rn)+‖gradv(t)‖L2(Rn)=+∞.  相似文献   

13.
针对严格α_1-对角占优M-矩阵A的‖A~(-1)‖_∞的估计问题,利用矩阵A的元素和矩阵分裂方法,将矩阵A分裂为严格对角占优M-矩阵B和非负对角矩阵G,进而利用已有严格对角占优M-矩阵的逆矩阵的无穷大范数的上界,给出矩阵B的‖B~(-1)‖_∞的上界Γ(B),此时若Γ(B)与G的最大对角线元的乘积小于1,则可得‖A~(-1)‖_∞的上界.最后通过数值算例对所得结论进行验证,表明所给出的方法可行.  相似文献   

14.
针对严格对角占优M-矩阵A的‖A~(-1)‖_∞的估计问题,利用矩阵A的元素构造迭代格式,给出A~(-1)的元素的单调不增的上界序列,进而利用这些上界序列给出‖A~(-1)‖_∞的单调不增的、收敛的上界序列.理论证明及数值算例均表明所得估计改进了目前一些已有结果.  相似文献   

15.
一个变分双曲型组的解   总被引:3,自引:0,他引:3  
本文研究带Dirichlet条件的边界值问题{□u+△G(u)=f(t,x),(t,x)∈Ω≡(0,π)×(0,π), (*)u(t,x)=0, (t,x)∈aΩ,的解的存在性,这里口是波算子a2/at2-a2/ax2,GRn→R是一连续函数.设σ(口)={k2-m2,k,m∈N}记波算子口的特征值的集合,(a2G(u)/auiaui)记u∈Rn.点处的Hessian阵.假定σ((a2G(u)/auiauj))∩σ(□)=φ.再设E={u|u(t,x)=∑k,mψkm(t,x)Ckm, Ckm ∈ Rn k,m ∈ N,∑k,m(k2+m2+1)|Ckm|2 <+∞},Y={y|y(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 - m2 <γi(u),μikm ∈ R,k,m ∈N,∑k,m(k2+m2+ 1)|μikm|2<+∞,i= 1,2,……,n} Z={z|z(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 -m2>γi(u),μikm ∈ R,k,m ∈ N ,∑k,m(k2 + m2+1)|μikm|2 <+ ∞,i = 1,2,……,n}.对Y中的k2-m2记ξ(‖u‖0) =min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{γi(v)-(k2- m2) > 0},对Z中的k2-m2,记η(‖u‖0)=min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{k2-m2-γi(v)>0},这里‖·‖0记(L2(Ω))n.假设∫+∞1ξ(s)ds=∞, ∫+∞1η(s)ds=∞.在上述条件下,我们使用R.F.Manasevich的最大值最小值定理证明问题(*)的弱解u0∈(H1(Ω))n的存在性和唯一性.  相似文献   

16.
在使用简单迭代法解非线性方程(组)时,要求迭代函数f(x)(F(x))必须满足q=supx∈D|f′(x)|<1(q′=supx∈D‖F′(x)‖<1)。如将迭代函数f(x)导数的最大模(F(x)的Jacobi矩阵最大范数)超出上述取值区间情况下的迭代函数f(x)(F(x))进行一系列恒等变形,建立一个新的迭代函数,让其导数的最大模(Jacobi矩阵最大范数)落在上述取值区间内,再运用压缩映射原理逐步逼近求出非线性方程(组)的近似解。这是一种新的改进,有更广的应用范围。两个数值计算实例表明,恒等变形得到这种新的迭代序列收敛,该方法可行。  相似文献   

17.
设X是维数不小于2的实Banach空间,分别记X的单位球面和单位球为SX={x∈X:‖x‖=1}和BX={x∈X:‖x‖≤1}.对于每个α∈(0,1),X的广义凸性模δ(α)(ε):[0, 2]→[0, 1] 定义如下:δ(α)(ε)=inf{1-‖α x (1-α)y‖:x,y∈SX,‖x-y‖≥ε}. 上述定义中的"SX"和""可以分别替换为"BX"和"=", 详细的证明见文献[1].  相似文献   

18.
将分别建立当λ→0和λ→+∞时,分数次积分算子的弱型极限行为.具体来说:对于任意的f∈L1(Rn),有下面2个等式成立,limλ→0λ|{x∈R~n:|I_αf|λ}|~((n-α)/n)=v_n~((n-α)/n)‖f‖1,limλ→+∞λ|{x∈R~n:|I_αf|λ}|~((n-α)/n)=0.  相似文献   

19.
设A∈C_r~(m×n),r≤min(m,n)。对于加权条件数K_(MN)(A)=‖A‖MN‖A_(MN)~+‖NM,本文指出在一定条件假设下,K_(MN)(A)在矩阵扰动问题中的极小性质。主要结果如下:1.设A∈C_r~(m×n),E是A的任意小扰动矩阵。R(E)(?)r(A),R(E~*)(?)R(A~*)且‖A_(MN)~+‖NM‖E‖MN<1,有(?)成立,则有K_(MN)(A)≤(?)MN(A)。2.设A∈C_r~(m×n),E为A的任意小扰动矩阵。r(A+E)=r(A),且‖A_(MN)~+‖NM‖E‖MN<1,有(?)成立,则K_(MN)(A)≤(?)MN(A)。其中(?)当r相似文献   

20.
提出了梯度矩阵(ΔF(x))的概念,构造了一种迭代法求最小二乘问题‖AX-B‖=min。通过这种方法,给定初始矩阵X1,在没有舍入误差的情况下,经过有限步迭代,找到它的一个解。并且,通过选择一种特殊的初始矩阵,得到它的最小范数解X*。另外,给定矩阵X0,通过求最小二乘问题min‖AX-B‖(其中B=B-AX),得到它的最佳逼近解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号