首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
自密实混凝土基本力学性能的多元线性回归分析   总被引:1,自引:0,他引:1  
本文以水胶比、粉煤灰掺量、砂率为参数、配制18组自密实混凝土,并进行基本力学性能试验,最后利用多元线性回归分析方法建立自密实混凝土抗压强度、劈拉强度、弹性模量与水胶比、粉煤灰掺量、砂率各因素之间的线性回归方程。对计算结果进行了显著性分析。从而建立了自密实混凝土抗压强度、劈拉强度、弹性模量等力学指标的预测模型。  相似文献   

2.
玄武岩纤维粉煤灰橡胶混凝土力学性能试验研究   总被引:1,自引:1,他引:0  
对玄武岩纤维橡胶混凝土设计了正交试验,对其力学性能进行测试并与普通混凝土对比,分析橡胶颗粒取代率、玄武岩纤维和粉煤灰掺量对混凝土28 d抗压、劈裂抗拉和抗折强度的影响。结果表明:橡胶颗粒取代率5%,玄武岩纤维掺量4 kg/m~3,粉煤灰掺量15%时,混凝土各项性能最佳。随橡胶颗粒取代率增加,混凝土抗压强度显著降低;而掺入玄武岩纤维使抗拉和抗折强度有较大幅度提升;最后从玄武岩纤维对混凝土类材料增韧阻裂机制进行了讨论。  相似文献   

3.
毛乌素沙漠砂混凝土力学性能研究   总被引:1,自引:0,他引:1  
设计正交试验,研究水胶比、粉煤灰掺量、砂率和沙漠砂替代率对沙漠砂混凝土7 d、28 d、56 d抗压强度和28 d劈裂拉伸强度的影响,通过极差分析和方差分析确定了沙漠砂混凝土的最优配合比。研究结果表明:用沙漠砂替代中砂配制混凝土是可行的;综合考虑沙漠砂混凝土7 d、28 d、56 d抗压强度和28 d劈裂拉伸强度,沙漠砂混凝土的最优配合比为水胶比0.34、粉煤灰掺量10%、砂率30%、沙漠砂取代率30%,为沙漠砂在工程中的应用提供指导和借鉴。  相似文献   

4.
粉煤灰掺量与砂浆强度和水化参量的关系   总被引:4,自引:0,他引:4  
对水胶比为0.15,I级粉煤灰掺量分别占胶凝材料总量(质量分数)为0,0.20,0.30,0.45和0.55的砂浆试样,经标准养护(d)7,28,90,180和365时的抗压强度、浆体非蒸发水量和CH含量,进行了系统测试,试验数据经回归分析,发现粉煤灰掺量与砂浆抗压强度、非蒸发水量和CH含量之间,分别存在很好的线性相关关系,从中,可以定量研究在不同的粉煤灰掺量和养护龄期时,粉煤灰效应对大掺量粉煤灰水泥基材料的力学性能和水化进程的影响规律。  相似文献   

5.
在保证砂浆拉伸粘结强度大于0.10MPa的前提下,通过正交试验方法研究聚丙烯纤维、木质纤维和可再分散性乳胶粉3因素、3种水平掺量对聚合物砂浆柔韧性的影响,并分析纤维和聚合物对砂浆的抗裂机理.结果表明,聚丙烯纤维和胶粉保持不变,木质纤维掺量0.35%时压折比降低13.36%;其他因素不变,聚丙烯纤维掺量0.6%时压折比降低15.20%;同理,胶粉掺量3%时压折比降低了27.52%;当取木质纤维、聚丙烯纤维及胶粉的掺量分别为0.35%、0.6%和3%时,压折比则降低52.94%,此时抗折强度达到最高点5.26 MPa,砂浆的柔韧性最佳,抗裂性得到显著加强.  相似文献   

6.
以粉煤灰为主要原材料,矿粉为添加剂,水玻璃和氢氧化钠为复合激发剂,标准砂为细集料,制备地聚合物砂浆。运用三维图与等值线作图分析的方法,探究水胶比与胶砂比这两个组成设计参数对粉煤灰基地聚合物砂浆的流动度、抗压强度、抗折强度的影响规律。试验结果表明水胶比与胶砂比均对粉煤灰基地聚合物砂浆流动度与力学强度影响较大。水胶比在0.4~0.42,胶砂比在0.45~0.5时,制备出的地聚合物砂浆工作性能和力学性能较优。基于地聚合物砂浆脆性较大的特点,应用长度为8 mm与12 mm的PVA纤维进行增韧改性。结果表明,掺量为0.5%的PVA纤维对地聚合物砂浆抗压强度影响不大,但是抗折强度显著提高,延性增强,因此压折比下降,弯曲韧性增强。  相似文献   

7.
通过正交对比试验,研究了水胶比、聚丙烯纤维和粉煤灰对400级泡沫混凝土性能的影响。试验结果表明,泡沫混凝土优选配合比为:水胶比0.58,聚丙烯纤维掺量0.10%,粉煤灰掺量为0时,7 d和28 d抗压强度值分别为0.76 MPa和1.32 MPa,吸水率为17.5%,干缩值为0.98 mm/m,导热系数为0.072 W/(m·K);研究结果表明,泡沫混凝土现浇围护结构墙体在风荷载、水平地震荷载作用下应力与位移均满足要求,为其应用提供理论依据。  相似文献   

8.
为有效和充分利用Ⅲ级粉煤灰与镁渣,以常用强度等级C30混凝土为研究对象,Ⅲ级粉煤灰取代率和镁渣掺量为因素,设计混合均匀试验方案U12(6,4),试验研究二因素耦合条件下混凝土的碳化规律。应用最小二乘法拟合,建立了混凝土碳化深度与粉煤灰取代率、镁渣掺量的非线性关系模型。因素效应分析表明:影响混凝土碳化的主要因素是粉煤灰取代率,其次是镁渣掺量;Ⅲ级粉煤灰取代率的碳化效应为正效应,镁渣掺量不大于33.8%时为负效应,粉煤灰与镁渣的耦合效应为负效应;镁渣能提高混凝土的抗碳化能力,与粉煤灰耦合有利于抑制混凝土的碳化。  相似文献   

9.
为有效和充分利用Ⅲ级粉煤灰与镁渣,以常用强度等级C30混凝土为研究对象,Ⅲ级粉煤灰取代率和镁渣掺量为因素,设计混合均匀试验方案U12(6,4),试验研究二因素耦合条件下混凝土的碳化规律。应用最小二乘法拟合,建立了混凝土碳化深度与粉煤灰取代率、镁渣掺量的非线性关系模型。因素效应分析表明:影响混凝土碳化的主要因素是粉煤灰取代率,其次是镁渣掺量;Ⅲ级粉煤灰取代率的碳化效应为正效应,镁渣掺量不大于33.8%时为负效应,粉煤灰与镁渣的耦合效应为负效应;镁渣能提高混凝土的抗碳化能力,与粉煤灰耦合有利于抑制混凝土的碳化。  相似文献   

10.
粉煤灰砂浆早期抗压强度试验研究   总被引:2,自引:0,他引:2  
根据不同配合比研制的粉煤灰掺量13.6%的3组,粉煤灰掺量11.5%的3组,共6组M5粉煤灰砂浆.经过3天自然养护,对其进行了抗压强度试验,研究粉煤灰砂浆早期抗压强度的影响因素.试验研究表明:引气剂(微沫剂)掺入会降低粉煤灰砂浆的早期强度.减水剂的掺入可以提高粉煤灰砂浆的早期强度.减水剂掺量一定时,水胶比越小,粉煤灰水泥的早期抗压强度越高.从6组试件中选出28天抗压强度可达M5以上的粉煤灰砂浆,其配合比为:水泥:粉煤灰:轻砂:水:微沫剂:减水剂=1:0.7:4.4:2.0:0.00326:0.096.  相似文献   

11.
宋景文  孙小巍  李文学 《科技信息》2010,(27):I0298-I0298,I0288
本文采用二次回归正交设计的方法研究粉煤灰水泥基材料7d的抗压强度和抗折强度,探讨了水胶比、胶砂比、粉煤灰掺量对水泥基材料力学性能的影响规律。研究表明:采用二次回归正交设计建立的数学模型能够准确的描述各因素与水泥基材料各龄期抗压强度、抗折强度相互之间的内在规律。  相似文献   

12.
以轻集料玻化微珠和工业废弃物粉煤灰制备引气型玻化微珠粉煤灰保温混凝土﹒利用正交试验方法,测试玻化微珠和粉煤灰在不同掺量下引气型玻化微珠粉煤灰保温混凝土的抗压强度和劈裂抗拉强度,得出其最优掺量,并测定该掺量下混凝土试件的导热系数﹒试验结果表明:当玻化微珠掺量为20%、粉煤灰掺量为10%时,引气型玻化微珠粉煤灰保温混凝土抗压强度为35.4MPa,劈裂抗拉强度为2.15MPa,导热系数为0.431 73 W/(m·K),力学性能和热工性能均能达到我国建筑墙体材料的设计标准,满足建筑节能需求﹒  相似文献   

13.
研究了不同掺量的膨胀剂和玄武岩纤维对含氯盐混凝土抗压强度和劈裂抗拉强度的影响。结果表明:当膨胀剂掺量和玄武岩纤维掺量相同时,含氯盐混凝土压拉强度随氯盐掺量的增加而增加;当氯盐掺量和玄武岩纤维掺量相同时,含氯盐混凝土压拉强度随膨胀剂掺量的增加而降低。与素混凝土相比,当氯盐掺量、玄武岩纤维掺量和膨胀剂掺量分别为4 kg/m~3、3 kg/m~3和8%时,含氯盐混凝土抗压强度和抗压强度增长率的最大值分别为48.3 MPa和26.4%;劈裂抗拉强度和劈裂抗拉强度增长率的最大值分别为3.63 MPa和23.5%。结果同时表明:在含氯盐混凝土中掺入玄武岩纤维对劈裂抗拉强度比对抗压强度的改善更显著。  相似文献   

14.
再生粗集料混凝土双变量强度公式研究   总被引:2,自引:0,他引:2  
通过对16组再生粗集料混凝土试件的试验,研究了不同水胶比条件下不同粉煤灰的掺量对再生粗集料混凝土抗压强度的影响.利用多元回归计算建立了水胶比、粉煤灰取代率和混凝土28d抗压强度之间的关系,建立了再生粗集料混凝土双变量强度公式.  相似文献   

15.
贵州II级粉煤灰排放量多且分布广。为了明确各地区II级粉煤灰的差异性及对砂浆力学性能和孔结构参数的影响,采用都匀粉煤灰、大方粉煤灰、鸭溪粉煤灰和六盘水粉煤灰等质量替代水泥,探讨粉煤灰掺量对砂浆力学性能、吸水量和孔结构参数的影响,并分析其作用机理。结果表明:粉煤灰的掺入显著降低砂浆的抗折强度和抗压强度,掺量以20%为宜,但抗折强度与抗压强度之比不断增长,抗折强度为抗压强度的1/4~1/5.8。粉煤灰种类和掺量对砂浆吸水量、孔径均匀性和平均孔径的影响规律不同,但粉煤灰砂浆的吸水量高于纯水泥砂浆。粉煤灰在砂浆中的作用可简述为形态作用、填充作用和火山灰效应,文中4种II级粉煤灰的活性较低,在砂浆中主要以填充作用为主。  相似文献   

16.
为了研究再生骨料喷射混凝土的相关性能,配制了5组混凝土,其再生骨料体积掺量依次为0%,25%,50%,75%和100%,对5组混凝土的坍落度、回弹率、超声波速、粘结强度、抗压强度、劈裂抗拉强度、弹性模量和密度进行了测试。试验数据显示:对应于再生骨料体积掺量依次为0%,25%,50%,75%和100%,喷射混凝土坍落度分别为185,187,183,176和172 mm,回弹率分别为22.1%,17.5%,19.6%,18.7%和15.2%,超声波速分别为4.82,4.75,4.54,4.51和4.48 km/s,粘结强度分别为1.21,1.24,1.21,1.26和1.22 MPa,抗压强度分别为40.2,36.3,32.8,31.5和30.3 MPa,劈裂抗拉强度分别为3.53,3.3,3.21,3.19和3.05 MPa,弹性模量分别为32.5,32.2,28.3,26.3和25.8 GPa,密度分别为2 188,2 185,2 150,2 135和2 125 kg/m~3。结果表明:再生骨料喷射混凝土回弹率和粘结强度这2个指标优于天然骨料喷射混凝土;坍落度、超声波速、抗压强度、劈裂抗拉强度、弹性模量和密度均随再生骨料体积掺量的增加而减小;抗压强度、劈裂抗拉强度、弹性模量和密度与超声波速之间明显线性相关。  相似文献   

17.
为探索粉煤灰对水泥基材料力学性能的影响,采用二次回归正交设计的方法研究粉煤灰水泥基材料3d、28d的抗压强度和抗折强度,探讨了各因素对水泥基材料力学性能的影响规律。研究表明:采用二次回归正交设计建立的数学模型能够准确的描述水胶比、胶砂比、粉煤灰掺量与水泥基材料各龄期抗压强度、抗折强度相互之间的内在规律。  相似文献   

18.
沙漠砂替代率对高强混凝土抗压强度影响研究   总被引:3,自引:2,他引:1  
通过正交实验,分析了水胶比、粉煤灰掺量、砂率和沙漠砂替代率对不同龄期高强混凝土抗压强度影响。在正交试验基础上,保持水胶比、粉煤灰掺量和砂率不变,通过单因素实验,进一步研究不同沙漠砂替代率对高强混凝土抗压强度的影响规律。研究结果表明:用沙漠砂替代中砂配制高强混凝土是可行的;综合考虑正交试验和单因素试验中沙漠砂替代率对高强混凝土抗压强度的影响,沙漠砂高强混凝土中沙漠砂的最佳替代率20%。  相似文献   

19.
为了研究不同掺量的钢纤维与聚丙烯纤维对自密实混凝土工作性能和强度的影响,对掺入聚丙烯纤维、钢纤维以及两种纤维混杂的自密实混凝土进行工作性能、抗压强度、抗拉强度试验和混杂效应分析。试验结果表明:工作性能随着纤维掺量的增加而降低,且钢纤维对工作性能的影响更加明显;钢纤维对混凝土抗压强度、抗拉强度的提高大于聚丙烯纤维;两种纤维混杂时更能有效改善自密实混凝土脆性破坏特征,当钢纤维掺量为0.6%,聚丙烯纤维掺量为0.2%时,抗压强度的增幅最大,当钢纤维掺量为0.6%,聚丙烯掺量为0.15%时,抗拉强度的增幅最大;抗压强度与劈裂抗拉强度均部分呈现正混杂效应,且劈裂抗拉强度存在最优混杂效应。  相似文献   

20.
为研究玄武岩纤维和砂对水泥土强度的影响,进行不同配比玄武岩纤维掺砂水泥土的无侧限抗压强度试验和劈裂抗拉强度试验,探讨了玄武岩纤维掺量和掺砂量对水泥土强度及破坏形态的影响和作用机制。研究结果表明:玄武岩纤维掺量0.5%、1.0%、1.5%,掺砂量10%的水泥土无侧限抗压强度分别为3.58、3.40、3.31 MPa,较素水泥土分别提高了26.1%、19.7%、16.5%;水泥土的抗拉强度随玄武岩纤维掺量的增加呈先增大后减小的趋势,在玄武岩纤维掺量为1.5%时达到最大值;玄武岩纤维掺量1.5%、掺砂量为10%和15%的水泥土抗拉强度分别为0.52 MPa和0.60 MPa,较素水泥土分别提高了44.4%和66.7%;玄武岩纤维的掺入使水泥土在破坏时保持较好的整体性,表现出一定的塑性特征;玄武岩纤维和砂在各自工作的同时,在一定程度上相互协作,共同促进水泥土压拉强度的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号