首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过大变形异步-同步轧制及随后600 ℃和700 ℃退火处理,成功制备了超细晶高锰TWIP钢,并研究了退火处理对大变形TWIP钢的组织和性能的影响.研究结果表明:经96%异步-同步大变形轧制后,材料组织显著细化,抗拉强度从621 MPa大幅提升至2 050 MPa; 经过600 ℃退火后,大变形轧制TWIP钢的组织基本完成了再结晶,材料的平均晶粒尺寸约为500 nm,抗拉强度1 079 MPa,延伸率达到了29%; 而经过700 ℃退火后,大变形TWIP钢的组织发生了完全再结晶,平均晶粒尺寸约为600 nm,抗拉强度达到了1 101 MPa,延伸率达到了54%.退火后的组织中存在大量的层错、位错胞等亚结构.相对于大变形轧制态和600 ℃退火态,700 ℃退火态的超细晶TWIP钢的优异的综合力学性能,主要源于孪晶诱发塑性变形机制及合金较低的层错能.  相似文献   

2.
采用表面机械研磨技术实现纯钛材料表面纳米化,并研究了纳米化处理后的材料表层组织结构,详细分析了样品表层纳米晶组织在不同温度、不同时间退火后的热稳定性.结果表明:纯钛TA2经过表面机械研磨处理后可以在表面形成等轴且取向随机的纳米晶层,晶粒尺寸约为12nm.对表面纳米化样品退火后发现,表层纳米晶组织在773 K以下温度退火后具有良好的热稳定性,晶粒尺寸没有明显增大;在773 K温度退火150min后晶粒尺寸稍有增大,而在773 K温度退火240min后晶粒尺寸明显增大,且横截面显微硬度也比表面纳米化后未退火样品显著下降,良好的热稳定性消失.  相似文献   

3.
等径弯曲通道变形制备超细晶铝合金的组织性能   总被引:1,自引:0,他引:1  
用等径弯曲通道变形(ECAP)的方法制备出超细晶铝合金材料,并研究了在不同道次条件下其显微组织的演化过程.研究表明,随着强烈塑性变形的增加,显微组织中开始形成大量晶粒尺寸小于1μm的位错胞组织,当其晶界取向差增大时,亚晶粒变为越来越细的板条状组织.当经过8道次ECAP变形后,晶粒尺寸由变形前的约50μm细化为约0.2μm.该超细晶铝合金材料在150℃的退火条件下,其晶粒尺寸稳定在0.2~0.3μm的范围内.在温度为500℃、应变速率为10-3s-1的拉伸实验中,该超细晶铝合金材料的最大延伸率高达370%,呈现出良好的超塑性.  相似文献   

4.
通过中间坯超快冷工艺,在0.2%C-2%Mn普碳钢中获得表层铁素体和心部马氏体的梯度层状组织,实现了钢板压下量约50%的大变形温轧.大变形马氏体经450℃和530℃退火后,制备出平均晶粒尺寸为0.52μm和0.66μm的超细晶组织.利用扫描电镜(SEM)、电子背散射衍射(EBSD)和准静态拉伸试验等手段,研究了超细晶钢板的微观组织与力学性能.结果表明,相较于610℃退火粗晶钢板,450℃和530℃退火超细晶钢的屈服强度可提升2~3倍,平均屈服强度分别达到了1 475 MPa和1 196 MPa,延伸率也显著下降.晶界强化和位错强化是超细晶钢强度提升的主要强化机制,而加工硬化率降低导致了超细晶钢的塑性下降.  相似文献   

5.
形变对板条马氏体回火组织的影响   总被引:1,自引:0,他引:1  
对Q235级低碳钢板条马氏体在550 ℃多道次单向压缩变形后退火和室温大塑性变形轧制后在此温度退火的显微组织演变规律进行了对比研究,结合未变形板条马氏体在此温度的回火组织演变,讨论了变形对马氏体分解过程、铁素体再结晶晶粒尺寸和析出碳化物形貌的影响. 实验结果表明,变形显著影响马氏体分解过程,促进渗碳体的析出和铁素体回复及再结晶. 热变形组织铁素体再结晶晶粒尺寸在0.5 μm左右;渗碳体形貌从细棒状向球状转变,随变形量增大渗碳体尺寸增大,继续保温60 min导致铁素体晶粒长大到1 μm左右,晶粒内部的渗碳体消失,原先在铁素体晶界析出的渗碳体球化、粗化. 冷轧试样在550 ℃退火保温时间在30 min内得到0.3~0.4 μm超细晶粒和尺度小于150 nm的弥散渗碳体颗粒组织;随退火保温时间延长到60 min,铁素体再结晶晶粒长大到1.9 μm,渗碳体颗粒尺寸约160 nm.  相似文献   

6.
高能球磨纳米镍粉制备块体材料的研究   总被引:1,自引:0,他引:1  
采用高能球磨法制备了纳米晶Ni粉末,对纳米晶粉末进行预压烧结,获得纳米晶镍块体材料.采用显微分析方法研究了纳米晶粉末和块体材料的显微组织结构.试验结果表明,高能球磨所得镍粉平均晶粒尺寸为10 nm;预压烧结块体的平均晶粒尺寸在100 nm以下;块体相对致密度在烧结温度为0.6Tm时达到最大值.  相似文献   

7.
异步冷轧纯铁回复与再结晶的电子背散射衍射研究   总被引:1,自引:1,他引:0  
本文采用异步轧制工艺成功制取等轴状超细晶纯铁,通过DSC曲线确定其退火工艺,使用电子背散射衍射(EBSD)观测超细晶工业纯铁在不同温度退火后的组织形貌和晶粒尺寸,研究其回复再结晶行为.结果表明,在400℃时,材料开始发生回复,再结晶形核开始,随着退火温度的提高,再结晶程度加深.当退火温度达600℃时,再结晶过程基本完成.  相似文献   

8.
氨基磺酸镍体系电沉积纳米镍的力学性能及热稳定性研究   总被引:2,自引:0,他引:2  
采用氨基磺酸镍体系镀镍液代替瓦特型镀镍液,应用脉冲电沉积技术,制备了平均晶粒尺寸为16.7 nm的纳米镍.在静拉伸应变速率范围(5×10-5~10-2s-1)内,纳米镍的强度和塑性均随应变速率的增加而增加,断裂形式表现为韧窝韧性断裂,获得的最高断裂强度和最大断裂延伸率分别为1 332MPa和5.31%.在退火温度为100、150和200℃保温1 h后,室温应变速率为10-3s-1时,纳米镍的强度和塑性随退火温度的升高而显著下降,原因为退火过程中晶内硫元素向晶界强烈偏聚引起材料变脆,断裂形式表现为晶间脆性断裂.XRD和TEM的观测结果表明,纳米镍在250℃退火时,晶粒发生显著长大,硬度快速下降.热分析仪测得的放热峰表明,275℃以后,大量的纳米晶粒发生异常长大.  相似文献   

9.
为研究等温处理对铝热法制备的块体纳米晶Fe3Al平均晶粒尺寸和硬度影响,对制得的材料进行800~1 200℃的等温处理.通过XRD和TEM分析材料的晶体结构和平均晶粒尺寸,用布洛维光学硬度计测定材料的维氏硬度.结果表明:等温处理前后纳米晶Fe3Al的晶体结构未发生变化,均为无序bcc结构;材料的平均晶粒尺寸约为16 nm,在等温处理之后有所长大,1 200℃等温处理8 h后,平均晶粒尺寸达到最大值20 nm;纳米晶Fe3Al的维氏硬度约为481 HV,在等温处理之后略有减小,经1 200℃等温处理8 h,维氏硬度最小值为457 HV.  相似文献   

10.
纳米晶铁基丝的制备及其导磁性能的研究   总被引:2,自引:0,他引:2  
该文介绍了采用熔融速淬法制备玻璃包覆非晶铁基合金丝 ,以及经 5 4 0℃退火处理得到纳米晶微丝的方法 .实验结果表明 ,用此方法可得到晶粒尺度为 6 nm左右的材料 ,该纳米晶磁导率比非晶铁基合金有显著的提高 ,因此在制造传感器和吸波材料中有广阔的应用前景 .文章还根据材料微观结构的改变 ,分析和讨论了磁导率提高的原因 .  相似文献   

11.
采用机械热处理法制各Al-Mg-Li合金细晶板材,研究预热温度、中间退火温度及转向轧制对板材塑性开裂及品粒细化的影响.结果表明:板材在低温(≤300℃)轧制时往往开裂,将轧制温度提高到400℃,可获得无开裂的板材,但经再结晶退火后的晶粒组织粗大,约为16μm;降低中间退火温度虽然可以明显提高晶粒细化程度,但退火后采用单向轧制,当形变量较大时,板材会出现开裂问题;中间退火后采用转向轧制,不但大形变量F板材轧制不开裂,而且细化晶粒及减小板材厚度方向层状分布的程度,再结晶后2个表面层的晶粒细小等轴,平均晶粒粒径为9.26 μm;中心层晶粒组织相对粗大略成扁平状,平均晶粒粒径为12.73 μm,约占板材总厚度的1/5.  相似文献   

12.
射频磁控溅射技术制备Ge-SiO2薄膜的结构和光学特性研究   总被引:2,自引:0,他引:2  
用射频共溅射技术和后退火的方法,制备出埋入SiO2基质中的Ge纳米晶复合膜(nc-Ge/SiO2)。用XRD对薄膜的晶体结构进行了测试,未经退火的样品呈现非晶状态,600℃退火后的薄膜中开始有Ge纳米晶粒出现。研究了薄膜的Raman散射光谱,发现了其红移和宽化现象。测量了薄膜的光致发光谱,所有样品都在394nm处发出很强的光,随着Ge纳米晶粒的出现,样品有310nm和625nm处的光发出,其强度随晶粒平均尺寸的增大而增强。  相似文献   

13.
Ni-P化学镀层相变过程研究   总被引:2,自引:0,他引:2  
针对镍磷化学镀镀层相变过程中存在的问题,通过X射线衍射、差热分析和透射电镜等手段对含磷原子数分数12.15%的镍磷镀层的镀态组织和晶化过程进行了初步研究。结果表明,这种中磷含量的镍磷镀层镀态下组织为非晶态,晶化起始温度321℃;退火过程中,非晶组织中先形成镍纳米晶,然后纳米晶镍伴随晶化过程进行迅速长大,并在镍基体上析出亚稳过渡相Ni12P5和稳定的Ni3P相,400℃退火90min后的组织为晶粒尺寸为微米级的镍基体上分布着弥散的Ni3P相和少量的Ni12P5相。  相似文献   

14.
采用溶胶-凝胶法制备了纳米晶TiO2粉末。TiO2粉末的X射线衍射结果表明,所制样品的平均晶粒粒径随焙烧温度的升高而增大,在400℃以下焙烧的样品晶粒大小为4.7~10.6nm,500℃以上晶粒很快长大,600℃基本完成了从锐钛矿型向金红石型的转变。透射电镜结果显示400℃处理后晶粒尺寸为7~8nm;700℃处理后的晶粒尺寸达150nm。运用相变理论计算了晶粒长大激活能,结合晶界结构弛豫解释了粒径随热处理温度变化关系。  相似文献   

15.
通过一种新型表面自纳米化方法——剧烈塑性滚柱滚压(SPRB),在纯铁表面成功制备出最小晶粒尺寸约300 nm的梯度超细晶结构.利用电化学方法,结合透射电镜、X射线衍射、扫描电镜等对这种材料的表面微观组织结构及腐蚀性能进行研究,结果表明:与粗晶铁相比,超细晶纯铁最表层硬度提高1.6倍以上,表层形成较强面织构,表层微观应变为(0.313±0.017)%;超细晶纯铁在3.5%Na Cl溶液中的自腐蚀电位相对于粗晶铁的正向移动24 m V,腐蚀电流密度从粗晶铁的2.371×10-5A/cm2降低到超细晶的7.547×10-8A/cm2;超细晶纯铁在6%Fe Cl3溶液中的点蚀腐蚀速度约为粗晶铁的一半;超细晶纯铁的耐腐蚀性能与粗晶铁相比有显著的提高,表层晶粒的细化和滚压形成的强织构是超细晶纯铁耐腐蚀性能提高的原因.  相似文献   

16.
采用溶肢-凝肢法制备了纳米晶TiO2粉末.TiO2粉末的X射线衍射结果表明,所制样品的平均晶粒粒径随焙烧温度的升高而增大,在400℃以下焙烧的样品晶粒大小为4.7-1 0.6nm,500℃以上晶粒很快长大,600℃基本完成了从锐钛矿型向金红石型的转变.透射电镜结果显示400℃处理后晶粒尺寸为7-8nm;700℃处理后的晶粒尺寸达150nm.运用相变理论计算了晶粒长大激活能,结合晶界结构弛豫解释了粒径随热处理温度变化关系.  相似文献   

17.
通过铝热反应熔化方法在厚度为5~15 mm的铜底材上制备块体纳米晶Fe3Al材料.通过X射线衍射(XRD)研究材料的晶粒尺寸,研究材料室温压缩下的力学性能和硬度.结果表明,所制备材料的晶粒尺寸均约为20nm,且晶粒尺寸随底材厚度的增加而增加.底材厚度为5 mm时纳米晶Fe3Al材料的屈服强度和硬度具有最大值,随着底材厚度的增加,屈服强度和硬度急剧减小,最后趋于稳定.5 mm时纳米晶Fe3Al材料的屈服强度约是10mm时的1.5倍.  相似文献   

18.
为了系统研究强力旋压成形纳米/超细晶筒形件过程中纳米/超细晶的形成机理,以具有高层错能的体心立方金属20钢为研究对象,首先通过分析旋压样件变形区剖面和表面的扇形塑性流动场来定性和定量解析强力错距旋压过程中金属流动的机理,然后采用金相分析技术和TEM技术研究了F+P钢在受强力旋压而剧烈剪切变形时的晶粒形态.结果显示:与其他强烈塑性变形方法类似,强力旋压过程中随着工件壁厚减薄率的增加,材料内部等轴初晶逐渐沿轴向被拉长,形成具有一定取向的冷变形织构,在随后的580℃×1 h的退火过程中生成了大小约为600 nm的等轴细晶.  相似文献   

19.
研究了非晶 Fe_(77.3)Cu_(0.7)Nb_(1.3)Si_(13.5)B_(7.2)合金在400~600℃的温度范围内退火后磁性的变化。磁性测量结果表明,获得高磁导率的最佳退火温度约540℃左右;经 X 射线衍射分析证实:在该温度下退火,非晶态合金已经晶化并形成体心立方结构的α—FeSi 固溶体,其晶粒直径约10~15nm。这种超细晶粒的纳米晶是高磁导率的根源。  相似文献   

20.
采用C方式等径弯曲通道变形(ECAP)法制备了平均晶粒尺寸~0.20 μm的亚微晶20MnSi钢,研究了退火温度对ECAP变形组织的影响.结果表明,随退火温度升高,ECAP变形获得的亚微晶铁素体变形组织在原位逐渐演变为再结晶组织,300~500℃退火1 h后,亚微晶铁素体组织稳定,晶粒无明显长大.退火温度高于500℃后,铁素体晶粒开始明显长大,650℃退火后的铁素体平均晶粒尺寸~8μm.经ECAP变形的珠光体组织在较低温度退火时,渗碳体具有较强的球化能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号