首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
研制了具有放大纳秒方形激光脉冲的高光束质量、高稳定的激光二极管(LD)抽运的钕玻璃激光放大器。为了获得较高的输出能量,采用LD泵浦的"串联式双程放大"高增益组件进行能量放大。为了获得高光束质量的光斑,利用液晶空间光调制器(LCSLM)对光束近场分布进行空间整形,使之产生特定的空间分布,进而对后级放大器增益不均匀性进行光学预补偿。放大器工作波长为1 053nm,工作频率为3 Hz,输入1nJ的3ns方形激光脉冲,输出激光脉冲能量为100mJ、光束口径为10mm×10mm的方光斑,能量不稳定度小于2%(均方根),净增益大于109。光束的近场调制度小于1.3∶1,远场焦斑衍射极限小于2DL,远场角漂移小于9.5μrad。  相似文献   

2.
用双频染料激光的相关调谐原理,设计了一种不用分束耦合元件的新型迈尔克逊双频选频腔,实验实现了共线,宽调谐范围,功率比可控,可调,窄线宽的双频激光的振汇与放大,获得了脉冲能量12-13mJ的高功率输出。  相似文献   

3.
采用Nd∶YAG调Q激光器输出的1.06μm光脉冲泵浦掺铬镁橄榄石(Cr4 ∶Mg2SiO4)晶体,实现Cr4 ∶Mg2SiO4激光器的增益开关运转.Cr4 ∶Mg2SiO4在46 mJ的泵浦能量下,输出激光脉冲的中心波长约为1.22μm,能量和脉宽分别为4.8 mJ和8.2 ns,其光-光转换效率达到12%.同时,研究激光器的光-光转换效率随聚焦透镜焦距的变化特性.  相似文献   

4.
采用Nd∶YAG调Q倍频激光器抽运钛蓝宝石(Ti∶Al2O3)晶体,实现钛蓝宝石激光器的增益开关运转.当用脉宽为32 ns,能量为21 mJ的532 nm绿光脉冲抽运时,在5 cm腔长情况下,获得比抽运光脉冲窄的15 ns脉宽的激光脉冲,脉冲能量为0.86 mJ,激光中心波长为780 nm.理论上,从速率方程组出发,计算输出激光的脉冲宽度,研究激光器抽运能量、腔长及腔结构对输出特性的影响.  相似文献   

5.
采用二极管侧面泵浦结构和主振放大方案,设计和实验研究了大能量高光束质量脉冲固体Nd:YAG激光器.获得了单脉冲输出能量0.47J,重复频率100Hz,光束质量M2因子为4的高光束质量全固态脉冲激光输出.  相似文献   

6.
报道了用脉冲激光引爆并测定粉尘云最小点火能量的方法。分别测定了Ca-Si,Ti和Mg粉尘云的最小点火能量,Ca-Si≤70 mJ;Ti≤7 mJ;Mg≤30 mJ。它们均低于过去所发表的结果。此法的优点是:没有火花放电那样的冲击;点火建立之前粉尘云的浓度不会改变,点燃粉尘云时的能量损失很小;用于点火的激光能量可以精确的测定。  相似文献   

7.
激光烧蚀Al靶产生的等离子体信号的飞行时间测量   总被引:1,自引:0,他引:1  
利用快速存贮示波器(100MHz)对脉冲激光烧蚀固体Al靶产生的等离子体信号的飞行时间特征进行了测量.在YAG脉冲激光基频输出(脉宽10ns,波长1.06μm,能量108mJ/pulse)、烧蚀斑的直径为200μm、靶面上激光功率密度约为1×10  相似文献   

8.
本文从理论上对掺Yb双包层光纤放大器进行了分析,数值计算了稳态时上能级粒子数和放大自发辐射的分布,能量饱和时间以及单个脉冲经过放大后的波形。实验中采用脉冲泵浦方式对低重频方波信号进行放大,得到了较为理想的输出。  相似文献   

9.
提出一种基于光学参量振荡器(OPO)获得脉冲串输出1.57μm人眼安全激光的新方法,实现对脉冲串重复频率、脉冲数目及脉冲间隔的调节.分析了光学参量振荡器阈值特性,并对谐振腔进行了优化设计,获得了重复频率可调的脉冲串激光输出.每1个脉冲串含有3个子脉冲,各个子脉冲之间的间隔大于200μs可调.当脉冲间隔为236μs时,脉冲串最大输出能量158 mJ,其中单个脉冲的脉宽约为6 ns.光学参量振荡器的光-光转化效率为30.5%.  相似文献   

10.
连续波注入的1 μm波段飞秒光学参量放大器   总被引:1,自引:0,他引:1  
提出了一种连续波注入的飞秒光学参量放大方案. 该方案兼顾了低抽运阈值和具有一定直接调谐能力的优点, 可获得与常规的脉冲式注入方案相当的转换效率, 种子光源与抽运光源真正独立无关. 在1 μm波段获得了最大单脉冲能量为30 mJ, 脉冲宽度小于250 fs.  相似文献   

11.
介绍了无抽空谐振腔的大气压脉冲N2激光器的制作方法.该激光器主要由双面环氧树脂印刷电路板制作的储能传输线和脉冲形成线、高压直流电源,N2气源等器件构成,两端均可输出激光,为科研、实验提供了一种自制结构简单、使用方便、光脉冲宽度小于1ns,单个脉冲的能量约为100~300 mJ的小型紧凑的无抽空谐振腔大气压脉冲N2激光器.  相似文献   

12.
针对目前常有激光告警接收机在信号处理中出现的激光窄脉冲判断力低以及整体结构复杂的技术缺点,提出了一种基于四象限探测器激光告警接收机信号处理系统设计方案,并对其进行了详细的硬件电路设计。分析了低输入内阻对激光窄脉冲响应时间的影响,设计了200欧姆输入阻抗的前置放大电路,在使用3mm大直径的四象限探测器的情况下,成功获得了8ns的激光窄脉冲响应时间;采用两级放大电路的输出同时进行电压保持的方法,在一级放大的基础上,获得了16.9dB的动态范围;采用峰值电压保持的方法,电压抖动时间只需要200ns且输出电压平坦,成功解决多路窄脉冲信号高速采集问题。通过实验表明,接收机接收动态范围可达到34dB,输出波形稳定且易于后续电路采集。  相似文献   

13.
为增强微弧氧化过程中电弧的可控性,从脉冲能量控制角度,设计了一种逆变式高频窄脉冲微弧氧化电源.该电源在传统的两级逆变电路结构基础上,增加了阻抗匹配电路,实现了变极性模式下回路及负载中能量的快速释放与存储.文中还详述了实现多种模式输出的协同控制策略及对应的电路工作模式,分析了电源的负载特性,并通过仿真和实验波形验证了该负载特性等效模型的有效性.实验结果表明,通过提高电源输出脉冲频率(最高20 k Hz)及减小脉冲宽度(最窄20μs),可实现对脉冲能量的精密控制和提高系统的能量利用率;高频窄脉冲处理模式获得的膜层表面孔隙率和表面粗糙度更低.  相似文献   

14.
采用波长相同但脉冲宽度不同的激光对航空铝合金2024T62进行了激光冲击强化,分析了激光参数,激光装置的光路系统配置,激光冲击区的表面质量及激光冲击强化效果,采用KD^*P为调Q晶体,三级放大的光路系统能获得最佳的激光冲击参数;脉冲宽度(FWHM)30ns,冲击光斑Φ7-Φ10mm,能量15-20J。  相似文献   

15.
分析了自发辐射与注入种子信号在激光建立过程中的竞争对种子注入的影响. 利用单块非平面环形腔单频激光器作为种子振荡信号,注入到高重复频率Q开关构成的从动激光器,获得单脉冲能量大于5mJ、脉冲宽度40ns的单纵模振荡脉冲激光输出. 测试了种子激光器在不同频率、功率及在从动激光器不同抽运能量下种子注入现象发生的几率实验. 结果表明,频率匹配和从动激光器的抽运能量是影响种子注入发生几率的重要因素.  相似文献   

16.
通常的定时调Q固体激光器(例Nd~( 3):YAG),由于泵浦能量的起伏而影响了激光器输出能量的稳定性,如果不是在泵浦后的固定时刻打开Q开关,而是在超辐射强度达到某一固定值时打开,便可得到稳定的输出。本文描述了这种恒定增益Q开关的设计;测量了输出脉冲激光能量的稳定性以及输出脉冲宽度,并与定时Q开关性能做了比较,结果其输出激光脉冲能量的稳定性提高了三倍。  相似文献   

17.
研究了在激光脉冲能量和激光脉冲宽度一定时激光光斑面积对多光子电离离子产量的影响。得到了离子产量最高的条件即最佳探测条件 ,同时还讨论了激光光斑面积对探测中常用的多光子电离的离子产量影响的程度。结果表明 ,激光光斑面积对离子产量的影响与光强指数在 1附近变化快慢有关 ,光强指数变化越快 ,激光光斑面积对离子产量的影响越大  相似文献   

18.
将紫外光预电离横向放电技术用于激励脉冲HF化学激光器,得到了240mJ的脉冲能量,电效率为1.8%,并对相关电参量进行了测量,对气体混合比进行了优化.  相似文献   

19.
设计了一个用于非相干脉冲超宽带接收机的0.18-μm CMOS工艺的能量检波器.该检波器包含了输入匹配模块、平方电路、翻转电压跟随器-电流检测电路、跨导级以及输出缓冲器.平方电路运用饱和区晶体管的平方律特性对输入差分信号进行平方,所得到的输出电流由翻转电压跟随器-电流检测电路转换成电压.跨导级对该信号进行放大并积分得到所接受的能量.测试结果可以看出,当输入信号的峰峰值超过60mV时,在高达300 MHz的频率下检波增益可以达到10 dB.而最小检测幅度为13 mV,此时的检波增益为5 dB.在移除输出缓冲器之后,输出脉冲的幅度将增加一倍.不计及测试焊盘,芯片面积为0.23 mm×0.3 mm.电路由一个1.8 V的电源供电,核心电路电流为3.5 mA.该检波器已成功应用于开关键控方式的接收机以实现高速宽带通信.  相似文献   

20.
李耀华  柯常军 《贵州科学》2002,20(3):12-14,29
将紫外光预电离横向放电技术用于激励脉冲HF化学激光器,得到了240mJ的脉冲能量,电效率为1.8%,并对相关电参量进行了测量,对气体混合比进行了优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号