首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Towards progress on DNA vaccines for cancer   总被引:2,自引:0,他引:2  
Cancer immunotherapy faces many obstacles that include eliciting immune reactions to self antigens as well as overcoming tumor-derived immunosuppressive networks and evasion tactics. Within the vaccine arsenal for inhibiting cancer proliferation, plasmid DNA represents a novel immunization strategy that is capable of eliciting both humoral and cellular arms of the immune response in addition to being safely administered and easily engineered and manufactured. Unfortunately, while DNA vaccines have performed well in preventing and treating malignancies in animal models, their overall application in human clinical trials has not impacted cancer regression to date. Since the establishment of these early trials, progress has been made in terms of increasing DNA vaccine immunogenicity and subverting the suppressive properties of tumor cells. Therefore, the success of future plasmid DNA use in cancer patients will depend on combinatorial strategies that enhance and direct the DNA vaccine immune response while also targeting tumor evasion mechanisms. Received 2 April 2007; received after revision 14 May 2007; accepted 21 May 2007  相似文献   

2.
Infection of bacteria triggers innate immune defense reactions in Drosophila. So far, the only bacterial component known to be recognized by the insect innate immune system is peptidoglycan, one of the most abundant constituents of the bacterial cell wall. Insects use peptidoglycan recognition proteins to detect peptidoglycan and to activate innate immune responses. Such specialized peptidoglycan receptors appear to have evolved from phage enzymes that hydrolyze bacterial cell walls. They are able to bind specific peptidoglycan molecules with distinct chemical moieties and activate innate immune pathways by interacting with other signaling proteins. Recent X-ray crystallographic studies of the peptidoglycan recognition proteins LCa, and LCx bound to peptidoglycan have provided structural insights into recognition of peptidoglycan and activation of innate immunity in insects. Received 28 December 2006; received after revision 2 February 2007; accepted 21 February 2007  相似文献   

3.
Polycystic kidney diseases (PKDs) represent a large group of progressive renal disorders characterized by the development of renal cysts leading to end-stage renal disease. Enormous strides have been made in understanding the pathogenesis of PKDs and the development of new therapies. Studies of autosomal dominant and recessive polycystic kidney diseases converge on molecular mechanisms of cystogenesis, including ciliary abnormalities and intracellular calcium dysregulation, ultimately leading to increased proliferation, apoptosis and dedifferentiation. Here we review the pathobiology of PKD, highlighting recent progress in elucidating common molecular pathways of cystogenesis. We discuss available models and challenges for therapeutic discovery as well as summarize the results from preclinical experimental treatments targeting key disease-specific pathways. Received 8 August 2007; received after revision 19 September 2007; accepted 2 October 2007  相似文献   

4.
Inhibition of gastric acid secretion is the mainstay of the treatment of gastroesophageal reflux disease and peptic ulceration; therapies to inhibit acid are among the best-selling drugs worldwide. Highly effective agents targeting the histamine H2 receptor were first identified in the 1970s. These were followed by the development of irreversible inhibitors of the parietal cell hydrogen-potassium ATPase (the proton pump inhibitors) that inhibit acid secretion much more effectively. Reviewed here are the chemistry, biological targets and pharmacology of these drugs, with reference to their current and evolving clinical utilities. Future directions in the development of acid inhibitory drugs include modifications of current agents and the emergence of a novel class of agents, the acid pump antagonists. Received 30 May 2007; received after revision 15 August 2007; accepted 13 September 2007  相似文献   

5.
Plants have an innate immunity system to defend themselves against pathogens. With the primary immune system, plants recognize microbe-associated molecular patterns (MAMPs) of potential pathogens through pattern recognition receptors (PRRs) that mediate a basal defense response. Plant pathogens suppress this basal defense response by means of effectors that enable them to cause disease. With the secondary immune system, plants have gained the ability to recognize effector-induced perturbations of host targets through resistance proteins (RPs) that mediate a strong local defense response that stops pathogen growth. Both primary and secondary immune responses in plants depend on germ line-encoded PRRs and RPs. During induction of local immune responses, systemic immune responses also become activated, which predispose plants to become more resistant to subsequent pathogen attacks. This review gives an update on recent findings that have enhanced our understanding of plant innate immunity and the arms race between plants and their pathogens. Received 24 June 2007; received after revision 18 July 2007; accepted 15 August 2007  相似文献   

6.
Regulatory mechanisms of mitogen-activated kinase signaling   总被引:5,自引:1,他引:4  
MAP kinases (MAPKs) are evolutionarily conserved regulators that mediate signal transduction and play essential roles in various physiological processes. There are three main families of MAPKs in mammals, whose functions are regulated by activators, inactivators, substrates and scaffolds, which together form delicate signaling cascades in response to different extracellular or intracellular stimulation. MAPK signaling is tightly regulated so that optimal biological activities are achieved and health is maintained. However, how the specificity of the signaling flow along each cascade is achieved is still relatively unclear. In this review, we summarize recent advances in understanding the regulation of MAPK cascades and the roles of MAP kinases and their regulators in development and in immune responses. Received 11 January 2007; received after revision 31 May 2007; accepted 5 July 2007  相似文献   

7.
NOD-like receptors (NLRs) comprise a family of cytosolic proteins that have been implicated as ancient cellular sentinels mediating protective immune responses elicited by intracellular pathogens or endogenous danger signals. Genetic variants in NLR genes have been associated with complex chronic inflammatory barrier diseases (e.g. Crohn disease, bronchial asthma). In this review, we focus on the molecular pathophysiology of NLRs in the context of chronic inflammatory diseases and pinpoint recent advances in the evolutionary understanding of NLR biology. We propose that the field of NLRs may serve as a prototype for how a comprehensive understanding of an element of the immunological barrier will eventually lead to the development of targeted diagnostic, therapeutic and/or preventive strategies. Received 29 October 2007; received after revision 10 December 2007; accepted 19 December 2007  相似文献   

8.
Toll-like receptors (TLRs) are a family of pattern recognition receptors that mediate innate immune responses to stimuli from pathogens or endogenous signals. Under various pathological conditions, the central nervous system (CNS) mounts a well-organized innate immune response, in which glial cells, in particular microglia, are activated. Further, the innate immune system has emerged as a promising target for therapeutic control of development and persistence of chronic pain. Especially, microglial cells respond to peripheral and central infection, injury, and other stressor signals arriving at the CNS and initiate a CNS immune activation that might contribute to chronic pain facilitation. In the orchestration of this limited immune reaction, TLRs on microglia appear to be most relevant in triggering and tailoring microglial activation, which might be a driving force of chronic pain. New therapeutic approaches targeting the CNS innate immune system may achieve the essential pharmacological control of chronic pain. Received 21 November 2006; received after revision 8 January 2007; accepted 7 February 2007  相似文献   

9.
Eosinophils are traditionally thought to form part of the innate immune response against parasitic helminths acting through the release of cytotoxic granule proteins. However, they are also a central feature in asthma. From their development in the bone marrow to their recruitment to the lung via chemokines and cytokines, they form an important component of the inflammatory milieu observed in the asthmatic lung following allergen challenge. A wealth of studies has been performed in both patients with asthma and in mouse models of allergic pulmonary inflammation to delineate the role of eosinophils in the allergic response. Although the long-standing association between eosinophils and the induction of airway hyper-responsiveness remains controversial, recent studies have shown that eosinophils may also promote airway remodelling. In addition, emerging evidence suggests that the eosinophil may also serve to modulate the immune response. Here we review the highly co-ordinated nature of eosinophil development and trafficking and the evolution of the eosinophil as a multi-factoral leukocyte with diverse functions in asthma. Received 6 December 2006; received after revision 11 January 2007; accepted 15 February 2007  相似文献   

10.
Hippocrates’ assertion that ‘what the lance does not heal, fire will’ underscores the fact that for thousands of years heat has been used to treat a variety of diseases, including cancer. Indeed, spontaneous tumor remission has been observed in patients following feverish infection [1], and expression of activated oncogenes, such as Ras, can render tumor cells sensitive to heat compared with normal cells [2, 3]. In the past, a primary drawback to the use of heat as a clinical therapy was the inability to selectively focus heat to tumors in situ. Of late, however, several approaches have been devised to deliver heat more precisely, including the use of heated nanoparticles, making hyperthermia a more clinically tractable treatment option [4, 5]. Despite these practical advances, the mechanisms responsible for heat shock-induced cell death remain controversial and ill-defined. In this Visions and Reflections we discuss recent findings surrounding the initiation of heat shock-induced apoptosis, and propose future areas of research. Received 17 March 2007; received after revision 25 April 2007; accepted 22 May 2007  相似文献   

11.
We summarize the clinical presentation and molecular basis of a unique group of congenital immunodeficiency disorders in which defects in immune tolerance mechanisms result in severe autoimmunity. Patients with severe, familial forms of multi-organ autoimmunity have been recognized and clinically described for more than 40 years (Clin Exp Immunol 1: 119–128, 1966; Clin Exp Immunol 2: 19–30, 1967). Some are characterized primarily by autoimmunity and others by autoimmunity combined with susceptibility to specific infectious organisms. The first mechanistic understanding of these disorders began to emerge approximately 10 years ago with the initial identification of causative genes. As a result, our understanding of how immune tolerance is established and maintained in humans has expanded dramatically. Data generated over the last 3–4 years including identification of additional gene defects and functional characterization of each identified gene product in human and animal models have added clarity. This, in turn, has improved our ability to diagnose and effectively treat these severe, life-threatening disorders. Inherited disorders characterized by immune dysregulation have dramatically expanded our understanding of immune tolerance mechanisms in humans. Recognition and diagnosis of these disorders in the clinic allows timely initiation of life-saving therapies that may prevent death or irreversible damage to vital organs.  相似文献   

12.
MicroRNAs (miRNAs) are a recently discovered family of small regulatory molecules that function by modulating protein production. There are approximately 500 known mammalian miRNA genes, and each miRNA may regulate hundreds of different protein-coding genes. Mature miRNAs bind to target mRNAs in a protein complex known as the miRNA-induced silencing complex (miRISC), sometimes referred to as the miRNP (miRNA-containing ribonucleoprotein particles), where mRNA translation is inhibited or mRNA is degraded. These actions of miRNAs have been shown to regulate several developmental and physiological processes including stem cell differentiation, haematopoiesis, cardiac and skeletal muscle development, neurogenesis, insulin secretion, cholesterol metabolism and the immune response. Furthermore, aberrant expression has been implicated in a number of diseases including cancer and heart disease. The role of miRNAs in these developmental, physiological and pathological processes will be reviewed. Received 3 August 2007; received after revision 3 October 2007; accepted 5 October 2007  相似文献   

13.
Untangling the molecular nature of sperm-egg interactions is fundamental if we are to understand fertilization. These phenomena have been studied for many years using biochemical approaches such as antibodies and ligands that interact with sperm or with eggs and their vestments. However, when homologous genetic recombination techniques were applied, most of the phenotypic factors of the gene-manipulated animals believed “essential” for fertilization were found to be dispensable. Of course, all biological systems contain redundancies and compensatory mechanisms, but as a whole the old model of fertilization clearly requires significant modification. In this review, we use the results of gene manipulation experiments in animals to propose the basis for a new vision. Received 26 January 2007; received after revision 7 March 2007; accepted 17 April 2007  相似文献   

14.
During the last decade, interest has grown in the beneficial effects of non-steroidal anti-inflammatory drugs (NSAIDs) in neurodegeneration, particularly in pathologies such as Alzheimer’s (AD) and Parkinson’s (PD) disease. Evidence from epidemiological studies has indicated a decreased risk for AD and PD in patients with a history of chronic NSAID use. However, clinical trials with NSAIDs in AD patients have yielded conflicting results, suggesting that these drugs may be beneficial only when used as preventive therapy or in early stages of the disease. NSAIDs may also have salutary effects in other neurodegenerative diseases with an inflammatory component, such as multiple sclerosis and amyotrophic lateral sclerosis. In this review we analyze the molecular (cyclooxygenases, secretases, NF-κB, PPAR, or Rho-GTPasas) and cellular (neurons, microglia, astrocytes or endothelial cells) targets of NSAIDs that may mediate the therapeutic function of these drugs in neurodegeneration. Received 4 December 2006; received after revision 24 January 2007; accepted 23 February 2007  相似文献   

15.
In recent years the etiopathology of a number of debilitating diseases such as type 2 diabetes, arthritis, atherosclerosis, psoriasis, asthma, cystic fibrosis, sepsis, and ulcerative colitis has increasingly been linked to runaway cytokine-mediated inflammation. Cytokine-based therapeutic agents play a major role in the treatment of these diseases. However, the temporospatial changes in various cytokines are still poorly understood and attempts to date have focused on the inhibition of specific cytokines such as TNF-α. As an alternative approach, a number of preclinical studies have confirmed the therapeutic potential of targeting alpha7 nicotinic acetylcholine receptor-mediated anti-inflammatory effects through modulation of proinflammatory cytokines. This “cholinergic anti-inflammatory pathway” modulates the immune system through cholinergic mechanisms that act on alpha7 receptors expressed on macrophages and immune cells. If the preclinical findings translate into human efficacy this approach could potentially provide new therapies for treating a broad array of intractable diseases and conditions with inflammatory components.  相似文献   

16.
Uncoupling protein 2 (UCP2) belongs to a family of transporters/exchangers of the mitochondrial inner membrane. Using cell lines representing natural sites of UCP2 expression (macrophages, colonocytes, pancreatic beta cells), we show that UCP2 expression is stimulated by glutamine at physiological concentrations. This control is exerted at the translational level. We demonstrate that the upstream open reading frame (ORF1) in the 5’ untranslated region (5’UTR) of the UCP2 mRNA is required for this stimulation to take place. Cloning of the 5’ UTR of the UCP2 mRNA in front of a GFP cDNA resulted in a reporter gene with which GFP expression could be induced by glutamine. An effect of glutamine on translation of a given mRNA has not been identified before, and this is the first evidence for a link between UCP2 and glutamine, an amino acid oxidized by immune cells or intestinal epithelium and playing a role in the control of insulin secretion. Received 26 January 2007; received after revision 16 April 2007; accepted 8 May 2007 C. Hurtaud, C. Gelly: These authors contributed equally to this work.  相似文献   

17.
We analyze the behavior of experts who quote forecasts for monthly SKU‐level sales data, where we compare data before and after the moment that experts received different kinds of feedback on their behavior. We have data for 21 experts located in as many countries who make SKU‐level forecasts for a variety of pharmaceutical products for October 2006 to September 2007. We study the behavior of the experts by comparing their forecasts with those from an automated statistical program, and we report the forecast accuracy over these 12 months. In September 2007 these experts were given feedback on their behavior and they received training at the headquarters office, where specific attention was given to the ins and outs of the statistical program. Next, we study the behavior of the experts for the 3 months after the training session, i.e. October 2007 to December 2007. Our main conclusion is that in the second period the experts’ forecasts deviated less from the statistical forecasts and that their accuracy improved substantially. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The aquaporin protein family generally seems to be designed for the selective passage of water or glycerol. Charged molecules, metal ions and even protons are strictly excluded. Recently, particular aquaporin isoforms were reported to conduct unconventional permeants, i.e., the unpolar gases carbon dioxide and nitric oxide, the polar gas ammonia, the oxidative oxygen species hydrogen peroxide, and the metalloids antimonite, arsenite and silicic acid. Here, we summarize the available data on permeability properties and physiological settings of these aquaporins and we analyze which structural features might be connected to permeability for non-water, non-glycerol solutes. Received 31 March 2007; received after revision 3 May 2007; accepted 23 May 2007  相似文献   

19.
In this study we have assessed the effect of testosterone (T), dihydrotestosterone (DHT) and 5αandrostan-3α, 17β-diol (3α-diol) therapies on diabetic neuropathy. Diabetes was induced in adult male rats by the injection of streptozotocin and resulted in decreased T and increased 3α-diol levels in plasma and in decreased levels of pregnenolone and DHT in the sciatic nerve. Moreover, a reduced expression of the enzyme converting Tinto DHT (i.e., the 5α-reductase) also occurs at the level of sciatic nerve, suggesting that the decrease of DHT levels could be due to an impairment of this enzyme. Chronic treatment for 1 month with DHT or 3α-diol increased tail nerve conduction velocity and partially counteracted the increase of thermal threshold induced by diabetes. Treatment with DHT increased tibial Na+,K+-ATPase activity and the expression of myelin protein P0 in the sciatic nerve.DHT, 3α-diol and T reversed the reduction of intra-epidermal nerve fiber density induced by diabetes. These observations indicate that T metabolites can reverse behavioral, neurophysiological, morphological and biochemical alterations induced by peripheral diabetic neuropathy. I. Roglio, R. Bianchi: These authors contributed equally to this study. Received 4 January 2007; received after revision 13 February 2007; accepted 27 March 2007  相似文献   

20.
Tauopathies are a group of neurodegenerative diseases characterised by intracellular deposits of the microtubule-associated protein tau. The most typical example of a tauopathy is Alzheimer’s disease. The importance of tau in neuronal dysfunction and degeneration has been demonstrated by the discovery of dominant mutations in the MAPT gene, encoding tau, in some rare dementias. Recent developments have shed light on the significance of tau phosphorylation and aggregation in pathogenesis. Furthermore, emerging evidence reveals the central role played by tau pre-mRNA processing in tauopathies. The present review focuses on the current understanding of tau-dependent pathogenic mechanisms and how realistic therapies for tauopathies can be developed. Received 3 December 2006; received after revision 23 February 2007; accepted 20 March 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号