首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
城镇污水厂剩余污泥的去向引起了业内的广泛关注,剩余污泥富含营养物质有利于其资源化利用,但需要对其中重金属进行管控。采用直流电解法处理剩余污泥,实验表明,电解反应在电压7 V,电流7 A,电解25 min时,污泥上清液中SCOD从312 mg/L增加到747.67 mg/L,TN从39 mg/L增加到196.69mg/L,TP从122.09 mg/L降低至2.2 mg/L;污泥中Cu的含量从106.2mg/kg降到55.1mg/kg,Zn的含量从276.45 mg/kg降到106.2 mg/kg。实验结论表明利用直流电解技术处理剩余污泥,使污泥中的营养物质得到释放,Cu,Zn元素有效去除,为剩余污泥的利用提供有利前提。  相似文献   

2.
采用KMnO_4或微波单独及联合作用预处理剩余污泥。通过对比破解前后污泥上清液中混合液挥发性悬浮固体浓度/混合液悬浮固体浓度(MLVSS/MLSS)、污泥体积指数(SVI)、污泥破解率(DD)、溶解性蛋白质含量、溶解性多糖含量、含固率等变化,考察KMnO_4或微波单独及联合作用对污泥破解以及污泥特性的影响。结果表明:KMnO_4-微波联合作用相比于单独使用KMnO_4或者微波效果更好,可以进一步提高污泥的破解率,增大有机物的溶出量,影响因素的主次顺序为微波功率、反应时间、KMnO_4投加量。采用联合作用的最佳处理条件为微波功率800 W,反应时间240 s,KMnO_4投加量2 000 mg/L,此时蛋白质和多糖在上清液中的质量浓度分别为229.46和258.47 mg/L。  相似文献   

3.
目的 研究温度、pH、反应时间和含水率对剩余污泥蛋白质提取率及嗅味值的影响。方法 以污水厂剩余污泥为原料、氧化钙为药剂,采用联合加热的方法处置剩余污泥,采用单因素和正交试验的方法来分析蛋白质提取率、嗅味值与各个反应条件之间的关系。结果 氧化钙-加热法提取剩余污泥蛋白质的最优工艺条件:pH为13,反应时间为4 h,温度为100℃,含水率为90%,蛋白质提取率为63.47%,嗅味值为6;氧化钙-加热法提取剩余污泥蛋白质各因素作用大小依次为:pH、反应时间、温度、含水率;各因素对嗅味值影响大小依次为:温度、pH、含水率、反应时间。结论 氧化钙-加热法有利于污泥水解反应的进行,但在碱性条件下温度过高会加剧美拉德反应,释放更多的恶臭物质而提高嗅味值,不利于提取剩余污泥中蛋白质。  相似文献   

4.
双氧水通过作用剩余污泥胞外聚合物可将污泥内微生物蛋白释放出来.通过筛选双氧水用量及处理时间得到:双氧水用量5mL/40mL,处理时间1.5h.在不同催化剂条件下研究双氧水对剩余污泥保外聚合物氧化程度的影响,发现适宜的催化剂能较大的提高胞外聚合物的氧化程度,通过实验得出最适催化剂为Cu2+和Fe2+,最佳浓度0.1%(w/v),处理时间1.5h.在研究双氧水氧化污泥机理中发现,在反应过程中pH一直在降低,说明双氧水在氧化污泥过程中有酸性物质生成.蛋白质溶解度受反应体系pH影响很大,适宜pH=8,最佳温度50℃.  相似文献   

5.
采用双频超声波对剩余污泥进行了破解试验研究,选取超声波的双频组合、声能密度、超声时间3个因素进行了正交试验.结果表明,最佳的超声波双频组合为18 kHz/20 kHz,声能密度为0.1 W/mL,超声时间为50 s;在处理浓度相同而体积不同的剩余污泥时,NH 3?N含量随污泥体积的增加而呈下降趋势.  相似文献   

6.
为了研究单过硫酸氢钾复合盐(PMS)对剩余污泥厌氧发酵的影响,将不同剂量的PMS投加至剩余污泥厌氧发酵系统中,分析污泥溶液化率、污泥分解率、可挥发性脂肪酸(SCFAs)、蛋白质和多糖、水解酶、发酵污泥毛细吸水时间(CST)及可挥发性悬浮固体浓度(MVLSS)等指标.研究发现,在污泥中投入适量的PMS能够有效地促进污泥水解酸化,提高污泥减量率.结果表明,当PMS为0.04~0.08 mg/mg时污泥发酵性能最佳,水解酸化性能相近.当PMS大于0.08mg/mg时,污泥发酵性能下降,且该条件下药剂消耗成本较高,不利于发酵系统运行.研究同时发现,PMS能够显著提高SCFAs中乙酸的比例,乙酸比例最高可达到75.55%,同时降低丙酸比例,丙酸比例最低可达到0.92%.  相似文献   

7.
针对活性污泥处理油脂污水的4个阶段,自配2 000 mg/L油脂污水,每个阶段处理72 h,测定活性污泥的主要成分.结果表明,4个阶段活性污泥含水率稳定在99. 30%99. 59%,有机质含量为55. 08%58. 38%,糖分含量为1. 49%2. 26%,蛋白质含量为30. 84%34. 90%,脂肪含量为0. 50%1. 58%.投加菌种进行生物强化处理后活性污泥含水率基本保持不变,有机质含量、糖分、蛋白质都有不同程度提高.其中,投加酶制剂处理阶段,脂肪转化成有机质效率最高,剩余污泥中油脂降解效率提升了39%,有机质和糖分分别含量达到58. 38%和2. 26%,蛋白质含量提高到33. 48%,脂肪含量降低至0. 96%.实验结果说明酶制剂生物强化降解油脂同时能有效改善活性污泥性能,促进油脂转化为糖分和蛋白质等有机质.剩余污泥中较多的蛋白质可以进行资源化利用,并对剩余污泥资源化发展提出建议和展望.  相似文献   

8.
对低剂量臭氧在剩余活性污泥减量中的应用进行了探讨.结果表明,当活性污泥进行低剂量臭氧(≤0.010 mgO3/mgMLSS)处理时,可取得较好的减量化效果.当臭氧投加剂量为0.010 mgO3/mgMLSS时,反应60 min活性污泥的总去除率达到77.73%.臭氧处理会同时导致溶解性化学需氧量(SCOD)的增加.臭氧投加剂量为0.005 mgO3/mgMLSS时污泥中的SCOD增加至20.28 mg/gMLSS·L.污泥沉降比(SV%)减少率随臭氧投加剂量的增大呈线性增加趋势.低剂量处理后的污泥容积指数(SVI)值在58~62 mg/L之间,污泥的沉降性能良好,并未产生污泥膨胀现象.  相似文献   

9.
热碱解-水解联合工艺预处理剩余污泥,可以实现污泥快速破胞,释放污泥细胞中的有机物,促进水解过程物质的转化,也有利于回收剩余污泥中的碳源. 基于此优点,本研究考察了温度、pH、反应时间对剩余污泥热碱解破胞效果的影响,以确定适宜的热碱解条件. 比较了不同水力停留时间(HRT=0~120h)下污泥水解过程中SCOD、挥发性脂肪酸(VFAs)、氮磷、蛋白质和糖类浓度的变化,分析了水解过程物质的转化情况. 结果表明,较高的pH(pH11)和较高的温度及延长反应时间均有利于提高污泥破胞效果. 适宜的热碱解条件为:热碱解破胞温度为70℃、初始pH 11,反应时间1 h. 在该条件下,SCOD浓度可超过11500 mg/L,污泥溶胞率为44%. 在水力停留时间为24 h时,VFAs和SCOD浓度分别高于2400 mg/L和5800 mg/L. 研究发现热碱解-水解反应约120h达到平衡,此时蛋白质和糖类稳定在130 mg/L和190 mg/L左右,其中,氮磷主要以氨氮和PO43-形式存在,相应比例分别为89%和94%. 热碱解-水解联合工艺通过加速污泥破胞,释放胞内有机物,能够明显地促进污泥的水解,这为剩余污泥热碱解-水解预处理的应用提供了技术支撑和理论依据.  相似文献   

10.
在35℃和pH=10的条件下,考察剩余污泥在NaOH,Na3PO4,NaOH+Na3PO4碱性条件下水解和产酸性能,以及剩余污泥发酵液中氨氮和正磷酸盐的回收情况,并计算回收剩余污泥中碳源和氮磷元素的成本.研究结果表明:剩余污泥在这3种碱性条件下具有较为相近的水解和产酸能力.但在NaOH+Na3PO4碱性条件下,剩余污泥发酵液中的磷酸盐和氨氮的摩尔比最接近1∶1,因此最适合以磷酸铵镁沉淀的方式回收.使用NaOH+Na3PO4控制污泥的pH发酵,回收发酵液中的氨氮和正磷酸盐的效果与NaOH碱性条件下的相当,但剩余污泥中碳源和氮磷元素的回收成本在3种碱性条件下最低.因此,使用NaOH+Na3PO4控制剩余污泥pH发酵,可以优化回收剩余污泥中碳源和氮磷元素的过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号