首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
利用区间上具有消失矩性质的多尺度小波基底,构造Fredholm第二类积分方程Galerkin框架,提出相应的截断策略,并优化了收敛阶,使其收敛阶和计算复杂度到达到几乎最优.  相似文献   

2.
运用Galerkin方法,以Chebyshev多项式作为逼近工具,提出了构造完全奇异积分方程近似解的一种途径,并分别就方程的指标k≥1及k≤0的情况,给出了近似解的具体形式。  相似文献   

3.
讨论了一维非线性Fredholm积分方程迭代Galerkin方法,证明了迭代Galerkin解的误差可展开为h的偶次幂,且首项为h^2p。从而可进行Richardson外推,提高数值解的精度。同时我们还给出了数值例子,数值计算结果与理论预测相符。  相似文献   

4.
综述第二类Fredholm积分方程的解法。  相似文献   

5.
本文讨论第二类非线性Fredholm型积分方程数值解的超收敛性,以Galerkin方法为基础建立了该类方程的Galerkin算法、小波Galerkin算法以及它们相应的迭代校正格式,证明了两种算法数值解的超收敛性,不仅将Hammerstein积分方程的结果推广到第二类非线性Fredholm型积分方程,而且应用小波分析工具得到了更精确的结果.  相似文献   

6.
7.
给出了求解第二类积分方程的快速小波迭代Galerkin方法的数值实现及其超收敛性的数值验证,并相应给出一种特殊形式弱奇异积分的数值计算方法,最后给出两个分别具有弱奇异核和光滑核的数值算例,用数值结果验证了快速小波迭代Galerkin方法的超收敛性.  相似文献   

8.
多元Fredholm积分方程类逼近解的优化   总被引:3,自引:1,他引:3  
研究了由多变量光滑函数为核所确定的第二类Fredholm积分方程类自适的直接方法的优化,并得到了误差阶的精确估计。  相似文献   

9.
引入了一种解第二类Fredholm积分方程的新的数值算法,该数值方法利用插值小波变换将积分方程转化成线性方程组并求解,经过变换后得到的线性方程组的矩阵是一个稀疏的带状矩阵.数值算例表明,与传统算法比较该方法计算量小,并且具有较高的精度.  相似文献   

10.
用Galerkin法求由多孔直杆扭转问题产生的积分方程的解,证明了相应的变分问题以及离散变分问题都是唯一可解的,由于约束条件的缘故,导出的线性方程组的系数矩阵不是正定的,但本文证明了它的各阶顺序主子式不等于零,从而可用三角分解法或高斯消去法,最后给出了一个数值例子,数值结果是相当满意的。  相似文献   

11.
稳定求解第一类Fredholm积分方程的一个方法   总被引:2,自引:0,他引:2  
为了得到第一类Fredholm积分方程稳定的数值解,对p个不同的光滑因子,分别利用光滑化方法求解,可得到p组带有光滑因子的稳定解.然后利用外插值的方法,外推得到光滑因子为零时的积分方程的稳定解.通过数值算例表明,该方法是稳定求解第一类Fredholm积分方程的一个有效途径.  相似文献   

12.
主要讨论了用Legendre配置方法求解第二类积分方程的数值解问题.首先我们选择Legendre多项式为基底,然后估计了逼近解的收敛性.我们证明了逼近解的收敛阶仍然保持最优.最后用数值例子验证了我们的方法的有效性.  相似文献   

13.
用Green公式和基本解推导得出的直接边界积分方程来求解二维Laplace方程的Dirichlet问题.对直接边界积分方程大都采用配点法求解,还未见有实际用Galerkin边界元来解的报道.对Laplace方程的直接边界积分方程进行变分后,利用Galerkin方法,同时采用线性单元变分对方程进行了求解.该方法需要在边界上计算重积分,推出了第一重积分的解析计算公式,对无奇异性的外层积分则采用高斯数值积分.数值实验表明该方法是可行有效的.  相似文献   

14.
提出一种基于RBFNNs和PSO求解第二类Volterra积分方程的混合方法.先将积分区间离散化为点集,并代入积分方程得到方程组,再利用RBF神经网络逼近积分方程中的未知函数,将所求解问题转化为残差平方和的极小化问题.利用PSO算法求解残差平方和的极小化优化问题,得到RBF神经网络的参数,即得问题的逼近解.数值实验表明,该方法可行有效.  相似文献   

15.
本文利用Galerkin法求解了三类典型的FPK方程。  相似文献   

16.
解第一类Fredholm积分方程的优化正则化策略   总被引:2,自引:1,他引:2  
探讨了第一类Fredholrn积分方程的病态性及其正则化求解策略的构建问题,并建立了一种改进的Tikhonov正则化算法.通过适当选取正则参数,证明了正则解能够达到最优的渐近收敛率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号