首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
溶胶凝胶法制备纳米级锂离子电池正极材料LiCrxMn2-xO4   总被引:2,自引:0,他引:2  
通过溶胶凝胶法低温下合成了 Cr与 Mn不同计量比的一系列正极材料 Li Crx Mn2 -x O4 ,并用 DTA,TGA,TEM,XRD,FT- IR对其形貌及其结构进行了表征 .结果表明采用该方法在4 5 0℃的低温下即可得到纯相的 L i Crx Mn2 -x O4 尖晶石 ,其平均粒径均为 80 nm左右 ,且分布均匀  相似文献   

2.
Low temperature performance of LiFePO4/C cathode was remarkably improved by slight Mn-substitution. Electrochemical measurements showed that about 95% of the discharge capacity of LiFe0.98Mn0.02PO4/C cathode at 20°C was obtained at 0°C, compared to 85% of that of LiFePO4/C cathode. The LiFe0.98Mn0.02PO4/C sample also presented enhanced rate performance at −20°C with the discharge capacities of 124.4 mA h/g (0.1C), 99.8 mA h/g (1C), 80.7mAh/g (2C) and 70 mA h/g (5C), respectively, while pristine LiFePO4/C only delivered capacities of 120.5 mA h/g (0.1C), 90.7 mA h/g (1C), 70.4 mA h/g (2C) and 52.2 mA h/g (5C). Cyclic voltammetry measurements demonstrated an obvious improvement of the lithium insertion-extraction process of the LiFePO4/C cathode by slight Mn-substitution. The results of FSEM observation and electrical conductivity measurement indicated that slight Mn-substitution minimized the particle size of LiFe0.98Mn0.02PO4/C and also obviously improved the electrical conductivity of the compound, thus obviously enhances the interface reaction process on the cathode.  相似文献   

3.
锂离子电池用正极材料Li(Co0.2-XNi0.8MnX)O2的合成制备研究   总被引:1,自引:1,他引:1  
研究了一种制备新型锂离子电池正极材料的工艺方法.通过采用溶胶凝胶法(sol-gel法合成了新型电池正极材料Li(Co0.2-XNi0.8MnX)O2。并采用XRD方法分析了材料的相变过程、烧结温度、烧结时间对材料相合成的影响及不Mn/Co比掺杂对材料相变的影响;通过SEM照片可见,Li(Co0.2-XNi0.8MnX)O2粉末元素分布均匀、粒径为1~4微米.为今后进行充放电性能的测试工作做准备.  相似文献   

4.
文章采用高温固相法合成尖晶石LiMn2O4,并采用液相包覆的方法对其进行改性处理。采用XRD、SEM、XPS以及电池测试系统等,研究了所制备材料的结构、组成、性能和包覆机理。实验结果表明:表面处理后的LiMn2O4循环性能显著提高,以A12O3对尖晶石LiMn2O4进行表面包覆,使LiMn2O4颗粒不与电解液直接接触,可以防止锰离子溶解在电解液中,获得结构稳定、循环性能优异的锂离子电池正极材料;同时Al2O3会和电解液中微量的HF反应,减小了HF对锰离子溶解的加速作用。  相似文献   

5.
以二乙烯基苯(DVB)为交联剂、偶氮二异丁腈(AIBN)为引发剂、聚乙烯吡咯烷酮(PVP)为模版剂,通过自组装,制备聚苯乙烯微球。经过氧化和高温炭化转换成硬炭微球。考察了硬炭微球作为锂离子负极材料的电化学性能。结果表明硬炭微球的首次放电比容量为505 mA·h/g,40次循环后保持在304 mA·h/g。  相似文献   

6.
Highly ordered SnO2/Fe2O3 composite nanowire arrays have been synthesized by electrophoretic deposition method. The morphology and chemical composition of SnO2/Fe2O3 composite nanowire arrays are characterized by SEM, TEM, EDX, XPS, and XRD. The results show that the SnO2/Fe2O3 composite nanowires are about 180 nm in width and tens of microns in length, and they are composed of small nanoparticles of tetraganal SnO2 and rhombohedral α-Fe203 with diameters of 10-15nm. The SnO2/Fe2O3 composite nanowires are formed by a series of chemical reactions.  相似文献   

7.
The third-order optical nonlinearities, including third-order nonlinear susceptibility X^(3), nonlinear refractive index (n2) and temporal response, were measured with forward DFWM using Nd:YAG mode-locked pulse laser. The results show that Eu203 doped 5ZnO-20Nb2O5-75TeO2 glasses have large n2 and ultra-fast temporal response. Raman spectra show that Eu2O3 dopant induces the changes in the local structure of glasses. The higher the dopant concentration, the larger the nonlinear refractive n2 and the faster the temporal response. The enhancement on the third-order optical nonlinearities can be attributed to the deformation of the electronic clouds in [TeO4] enhanced by Eu2O3 dopant.  相似文献   

8.
以NH4SCN为硫源,在水溶液中电沉积制备Ni3S2/Ni复合材料.利用EDS、SEM、XRD分别对该复合材料进行组分、形貌、晶体结构的表征与分析,并将所制备的复合材料与Li片组成电池,研究其电化学性能.结果表明NH4SCN的浓度对复合材料的形貌及电性能有显著的影响.如在NH4SCN浓度为0.1 mol/L时,该复合物由亚微米颗粒组成,此时的电化学性能最好,首次放电比容量达到240.4 m Ah/g,容量保持率为89.35%.  相似文献   

9.
A coordination complex was synthesized from NiCl2 and dipeptide glycylglycine(GG). It was characterized by element analysis, NMR and TG methods, and then was determined to be Ni(C4HsN2O3)2Cl2. Using an isoperibolic reaction calorimeter, the standard molar enthalpy of formation of Ni(GG)2Cl2(solid) has been determined to be -(1 674.66±2.02) kJ · mol^-1 at 298.15 K.  相似文献   

10.
A new co-precipitation route was proposed to synthesize LiNi0.8Al0.2−xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8Al0.2−xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8Al0.2−xTixO2 cathode materials are 0.1, 700°C, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8Al0.2−xTixO2.  相似文献   

11.
以球形Ni(OH)2为核心原料,Al(NO3)3.9H2O、Co(NO3)2.6H2O和LiNO3为包裹原料,采用融盐包裹法在空气中煅烧合成了单相固溶体LiNi0.7Co0.2Al0.1O2。用XRD研究了合成产物的物相和结构,用SEM研究了合成产物的形貌,用电池性能测试仪研究了合成产物的电化学性能。实验结果表明,合成产物具有α-NaFeO2型层状有序结构、球状形貌和良好的电化学性能。  相似文献   

12.
Nanoparticles of Ce0.6Zr0.35Y0.05O2 (CZY) solid solution have been prepared by the CTAB (hexadecyl-trimethyl ammonium bromide), CTAB-EG (ethylene glycol) templating, and CTAB-EG-NaCl (in which the pores of the precursor synthesized by the CTAB-EG method is filled by a certain amount of NaCl) method, respectively. The physical properties of these materials were characterized by means of tech-niques such as X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and N2 adsorp-tion-desorption measurements. The CZY samples synthesized by the above three methods display wormhole-like mesoporous morphology and cubic crystal structures. The materials are narrow in pore size distribution (averaged pore diameter = 5.3―7.1 nm), high in surface areas (95―119 m2/g), and large in pore volumes (0.16―0.18 cm3/g). It has been demonstrated that the introduction of NaCl is capable of retaining the pore structures of solid nanomaterials at high-temperature calcination.  相似文献   

13.
Oxalic-acid-based co-precipitation method was employed to prepare LiNi2/3Mn1/3O2 sample with a high-ordered structure. Li+, Ni2+ and Mn2+ acetates were used as starting materials. The influence of the amount of lithium source in the starting materials on Li+ content, disorder of Li+-Ni2+ ions, and electrochemical performance has been investigated. Rietveld refinement shows that the sample prepared with 20% excess Li-source in the starting materials exhibits a perfect ordered structure. A specific discharge capacity is as high as 172 mAh/g at C/20 in the voltage range of 4.35–2.7 V. However, the cyclability is not satisfactory: about 25.3% fade in capacity was observed over 50 cycles. Chemically stable SiO2 was coated on the surface of LiNi2/3Mn1/3O2 particles. A significant improvement in cyclability was attained with 3 wt% SiO2 coating, which is ascribable to the protection of LiNi2/3Mn1/3O2 particles from being dissolved into the electrolyte.  相似文献   

14.
首次采用基于复合络合剂柠檬酸和β-环糊精的溶胶凝胶法制备了尖晶石型锰酸锂,并研究了煅烧温度对材料电化学性能的影响。电化学性能表明,700℃煅烧制备的材料具有优异的倍率和循环性能。在3C电流下此材料的首次和第200次放电比容量分别为102mAh/g和90.8mAh/g,容量保持率为89%。  相似文献   

15.
以醋酸锂、醋酸锰和醋酸镍为原料,羟基乙二酸为螯合剂,通过溶胶-凝胶法制备层状LiMn0.5Ni0.5O2正极材料,得到的产物具有典型的α-NaFeO2层状结构,颗粒尺寸在300-400nm之间。对900℃下制得的层状LiMn05Ni0.5O2在2.5-4.3V之间进行充放电测试,电流密度为0.1mAcm^-2,其首次放电容量达到了161.2mAh g-^1。经过20次循环后,仍然保留了初始容量的88%。  相似文献   

16.
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder (34.85 A·m2·kg–1) was markedly lower than that of the Fe3O4 powder (79.55 A·m2·kg–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.  相似文献   

17.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

18.
以醋酸锂、醋酸锰和醋酸镍为原料,羟基乙二酸为螯合剂,通过溶胶-凝胶法制备层状LiMn0.5Ni0.5O2正极材料,得到的产物具有典型的α-NaFeO2层状结构,颗粒尺寸在300~400nm之间。对900℃下制得的层状LiMn0.5Ni0.5O2在2.5~4.3V之间进行充放电测试,电流密度为0.1mAcm-2,其首次放电容量达到了161.2mAhg-1。经过20次循环后,仍然保留了初始容量的88%。  相似文献   

19.
以球形Ni(OH)2为核心原料,Al(NO3)3·9HzO、Co(NO3)2·6H2O和LiNO3为包裹原料,采用融盐包裹法在空气中煅烧合成了单相固溶体LiNi0.7Co0.2Al0.1O2。用XRD研究了合成产物的物相和结构,用SEM研究了合成产物的形貌,用电池性能测试仪研究了合成产物的电化学性能。实验结果表明,合成产物具有α-NaFeO2型层状有序结构、球状形貌和良好的电化学性能。  相似文献   

20.
采用共同沉淀和溶液浸渍相结合的方法合成了锂离子二次电池正极材料Li1+xCo0.2Ni0.8O2(0≤x≤0.10)。用粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子体-原子发射光谱(ICP-AES)、电化学等方法对生成物进行了元素组成、形貌、物相与结构、充放电循环等分析。分析结果表明所得到的生成物为球形颗粒,粒径大小均匀,其结构为αNaFeO2型的层状结构, 生成物中无杂质相, 生成物的首次充放电效率高、比容量高、循环性能好。在2.00mA/cm2电流密度下,首次放电容量可达183mAh/g, 50次循环的保持率为3.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号