首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
一种改进的聚类算法在入侵检测中的应用   总被引:1,自引:0,他引:1  
为了研究聚类算法在入侵检测中的应用,该文讨论了传统的k-means算法,指出其存在的问题;将遗传算法引入到聚类算法中,提出了一种改进的k-means算法。实验证明,用该算法实现的数据聚类与传统的k-means算法相比较,能有效提高数据聚类效果。  相似文献   

2.
提出了一种基于改进混合并行遗传算法的多文档文摘方法.该方法将k-means聚类算法的高效、局部搜索特性,和并行遗传算法的全局优化能力有机结合,解决了k-means算法对初始聚类中心的选择较为敏感,易于陷入局部最优等问题,提高了多文档聚类算法的效率和精确度.  相似文献   

3.
一种新的基于蚁群原理的聚类算法   总被引:1,自引:1,他引:0  
为了改善聚类分析的质量,提出一种与蚁群原理相结合的聚类方法. 首先对传统的聚类算法k-means进行改进,克服传统的k-means算法必须事先确定分类的个数k和选择聚类点的缺陷,然后将蚁群算法的转移概率引入k-means算法,对上述聚类结果进行二次优化.实验结果表明,改进的k-means与蚁群算法相结合的聚类方法比单一聚类算法更有效.  相似文献   

4.
对k-means聚类算法的改进研究   总被引:2,自引:0,他引:2  
本文从k-means算法出发,通过分析和比较,提出一种基于Kruskal算法和贪心策略的改进的k-means聚类算法,并对其进行实验分析,改进算法具有比较好的聚类效果,整体分布比较均匀,聚类效率得到了较大的提高。  相似文献   

5.
针对k-means算法必须事先指定初始聚类数k,并且对初始聚类中心点比较敏感,聚类准则函数对求解的最优聚类数评价不理想,提出一种基于局部密度的启发式生成初始聚类中心方法,在此基础上设计一种准则函数自动生成聚类数目,改进了传统k-means算法.实验表明改进的算法比传统k-means算法提高了聚类效率.  相似文献   

6.
针对经典k-means聚类算法的弊端进行一定程度上的改进,提出一种新的基于距离相等函数决定最佳聚类值的改进方法.实验采用两大类标准数据集来测试该算法,并和k-means算法的结果进行了比较,证实了该改进算法的有效性,解决了聚类数目k值的难确定性问题.  相似文献   

7.
改进k均值聚类算法在网络入侵检测中的应用研究   总被引:2,自引:0,他引:2  
针对k-means算法事先必须获知聚类数目以及难以确定初始中心的缺点, 提出了一种改进的k-means聚类算法.改进后的算法首先使用了复合形和粒子群算法来选取聚类的初始中心点,然后使用k-means算法快速收敛获取聚类结果.实验表明:把改进后的算法用于网络入侵检测系统中,可以提高不需指导的异常检测的检测率,降低误检率.  相似文献   

8.
针对k-means差分隐私聚类结果的可用性较差的问题,依据LBS的数据采集特点对k-means算法进行了改进.仿真实验证明:在LBS隐私保护方面,提出的改进k-means聚类方法在聚类结果的匿名性方面相对普通差分隐私k-means聚类方法有一定程度的提高.  相似文献   

9.
k-means算法原理简单、收敛速度快,但易陷入局部最优,且须将聚类的类簇数作为先验知识,为此,引入量子微粒群与k-means算法结合,提出了一种改进的动态聚类算法。改进算法具有量子微粒群的全局搜索能力,且对每个粒子采用k-means进行优化,从而加快算法的收敛速度。通过适应度函数值的调整,算法在聚类中能够搜寻到最优类簇数,这样类簇个数和中心就不受主观因素的影响。实验表明,算法有效。  相似文献   

10.
针对高维数据下的聚类效果需要提高,提出一种基于期望最大化的k-means聚类改进算法.该算法在没有降维和破坏原有数据结构的情况下,把期望最大化算法和k-means算法相结合,用期望最大化算法选取k-means的算法的初始聚类中心.并针对高维数据提出一种新的距离算法,代替传统的距离算法.实验结果表明提出的算法的可行性,并且在处理高维数据时的有效性.  相似文献   

11.
针对果蝇算法对高维函数收敛精度低的缺点,提出了一种改进的基于扇形搜索的果蝇算法(Fan search-Fruit Fly Optimization Algorithm,FS-FOA),该算法在原果蝇FOA算法的基础上改进了果蝇群体的搜索路径,并赋予果蝇个体趋利性,使更多的果蝇个体朝着味道浓度更大的方向前进,使果蝇群体的搜索方向有更多的选择性,增加果蝇算法在处理高维函数问题上的收敛速度和收敛精度;并将改进的FS-FOA算法与K-means聚类相结合,提出一种FS-K聚类算法,与原K-means聚类和原果蝇(FOA)算法进行对比实验,引入5个经典的测试函数对原FOA算法和FS-FOA算法寻优结果进行测试,结果表明采用FS-FOA算法具有更高的收敛精度;引入5个UCI公共数据集对改进FS-K聚类算法和原K-means算法、SOM聚类算法、FCM聚类算法进行测试,结果表明FS-K聚类算法具有更好的聚类效果。  相似文献   

12.
针对原始K-means算法的一系列问题,提出一种基于半监督的K-means聚类改进算法,能够自动进行聚类,找出最优K值,并且最大限度地找出孤立点.首先根据样本集自身的特点,按照"类内尽可能相似"原则一步一步形成数据集,然后对数据集进行"去噪"与合并相似簇,最后,利用少量的标记信息指导和修正聚类结果.在UCI的多个数据集...  相似文献   

13.
针对全局K-means聚类算法和快速全局K-means聚类算法在选择下一簇的聚类中心点时,需要逐一计算数据集中每个点作为备选聚类中心点时的簇内平方误差函数,而数据集中存在很多不可能作为备选点的噪声点.为剔除噪声点,提出了一种基于高密度数的DGK-means算法,并通过UCI数据库中的4组数据集进行实验测试.验证了在聚类效果稳定的前提下,改进的DGK-means算法比全局K-means算法和快速全局K-means算法,聚类用时更短,聚类效率更高.  相似文献   

14.
介绍了 k -means 和 DBSCAN 聚类算法的基本原理和优缺点,针对传统聚类算法无法有效处理高维混合属性数据集的问题,对原有的数据归一化方法进行改进,在 k -means 和 DBSCAN 聚类算法的基础之上,结合增量聚类的思想和数据之间相异度的计算方法,提出了基于密度的增量 k -means 聚类算法,有效处理具有高维混合属性的数据集,改进了数据相异度的计算方法。  相似文献   

15.
针对数据集的聚类过程容易受到离群值的影响这一问题,提出了局部密度离群值检测k-means算法,即先对数据集使用局部密度离群值检测方法检测离群值,先把离群值去除,再进行k-means聚类,算法的有效性通过Davies-Bouldin指标(DB)、Dunn指标和Silhouette指标进行评价,在人工生成的数据集与UCI数据集上验证,去除离群值,再使用k-means算法得到的聚类结果相比原始数据集进行k-means算法聚类结果较好,并且用在疫情数据分析上,对安徽省、北京市、福建省、广东省等24个省、市、自治区2020年2月18日新型冠状病毒肺炎确诊人数进行聚类分析,得到的去除离群值在使用k-means算法相比原始数据集进行k-means算法聚类结果较好,该结果能帮助更好地在实际中怎么去做决策以及更好地降低经济损失。  相似文献   

16.
针对传统阴阳k-means算法未利用数据结构导致计算效率较低的问题, 提出一种高效阴阳k-means聚类算法. 该算法根据数据相似性将原始数据进行逐层分解, 并建立满m叉树结构存储各层数据, 以树结构各叶子节点中存储的数据信息建立加权数据, 运行加权阴阳k-means算法得到收敛中心. 在原始数据中以加权数据收敛中心为初始化条件运行传统阴阳k-means算法进一步优化目标函数值. 在5组UCI数据集上与k-means、传统阴阳k-means及另外两种加速算法进行对比实验, 实验结果表明, 该算法具有较高的加速比, 且求解精度与传统阴阳k-means聚类基本相同.  相似文献   

17.
一种改进的基于遗传算法的K均值聚类算法   总被引:2,自引:0,他引:2  
结合遗传算法和K均值聚类算法的优点,提出一种改进的基于遗传算法的K均值聚类算法.将遗传算法的编码方法、初始化、适应度函数、选择、交叉和变异等较好地应用于聚类问题,不仅解决了K均值聚类算法中K值难以确定、对初始值敏感以及遗传算法存在收敛性差和容易早熟的缺点,而且实现了聚类中心的优化选择、K值的自动学习和基因的自适应变异等...  相似文献   

18.
在分析传统的聚类算法优越性和存在不足的基础上,基于Chameleon算法和谱平分法的思想提出了一种新的聚类方法。相比传统聚类算法而言此算法克服了如k—means算法、EM算法等传统聚类算法在聚类不为凸的样本空间时容易陷入局部最优的缺点,能在任意形状的样本空间上聚类,且收敛于全局最优解,并且可以降低噪声和离群点的影响,提高了算法的有效性。在UCI数据集和5个特殊的二维数据点组成的数据集上进行了实验,证明了本方法的有效性。  相似文献   

19.
针对传统的以k-means为代表的分割聚类算法认为所有的聚类样本对聚类中心的影响都是相同的这一观点,提出基于样本加权的聚类算法,并采用实际数据集验证算法的有效性.实验表明,该算法比传统的k-means聚类算法具有更高的精确度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号