首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于一个图G和一个正整数k,若图G中任意一条阶数为k的路都至少包含集合S?V(G)中的一个顶点,那么集合S就为图G的一个k-路点覆盖。最小的k-路点覆盖基数记为ψk(G),为图G的k-路点覆盖数。研究圈图分别与圈图、完全图及完全二部图做笛卡尔乘积图的k-路点覆盖,得到ψk(G)相关的精确值和上下界。  相似文献   

2.
S?V(G)是G的一个顶点集且|S|≥k,其中2≤k≤n.连接S的树T叫作斯坦纳树.两棵斯坦纳树T1和T2称为内部不交的,当且仅当它们满足E(T1)∩E(T2)=?和V(T1)∩V(T2)=S.令κG(S)是G内部不交的斯坦纳树的最大数目,κk(G)=min{κG(S)∶S?V(G),|S|=k}定义为G的广义k-连通度.很显然,当|S|=2时,广义2-连通度κ2(G)就是经典连通度κ(G).因此广义连通度是经典连通度的推广.主要讨论泡序图Bn的广义4-连通度κ4(Bn).得到的结论是当n≥3时,κ4(Bn)=n-2.  相似文献   

3.
设G是阶数不小字3的简单连通图,G的k-正常边染色称为是邻点可区别的,如果对G任意相邻两顶点关联边的颜色集合不同,则k中最小者称为是G的邻点可区别的边色数.本文给出了几类乘积图的邻点可区别的边色数的上界,并由此得到一些乘积图的邻点可区别的边色数.  相似文献   

4.
图G的Pk-路图Pk(G)是以G的k-长路构成的集合为点集,这两个路在Pk(G)中相邻当且仅当这两个k-长路在G中的交为一个k-1-长路且并未一个k+1-长路或者k-长圈时.令Ek={(v,p):p∈V(Pk(G)),v是图Pk(G)的一个顶点},定义全Pk-图Tk(G)如下:Tk(G)=(V(G)∪V(Pk(G)),E(G)∪E(Pk(G))∪Ek).该文研究全Pk-图的边连通性.  相似文献   

5.
设图G是一个连通图,S⊆V(G)。图G的一棵S-斯坦纳树是一棵包含S中所有顶点的树T=(V ',E '),使得S⊆V '。如果连接S的两棵斯坦纳树T和T ',满足E(T)∩E(T ')=且V(T)∩V(T ')=S,则称T和T '是内部不交的。定义κ(S)为图G中内部不相交S-斯坦纳树的最大数目。广义k-连通度(2≤k≤n)定义为κk(G)=min{κ(S)|S⊆V(G)且|S|=k},显然,κ2(G)=κ(G)。证明了κ3(FQn)=n,其中FQn是n-维折叠超立方体。  相似文献   

6.
图G的k-邻点可区别边染色是指G的一个正常k-边染色满足对任意相邻顶点u和v,与u关联的边所染颜色集合和与v关联的边所染颜色集合不同。使G有k-邻点可区别边染色的k的最小值称为G的邻点可区别边色数,记作χ'a(G)。通过运用权转移方法研究了无相交三角形平面图的邻点可区别边色数,证明了若图G为无相交三角形平面图,则χ'a(G)≤max{Δ(G)+2,10}。  相似文献   

7.
具有n个顶点的图G(n≥3)是k-可序哈密顿-连通的(k是整数,且2≤k≤n),如果对于G中每一个具有k个不同顶点的可序集合S={v1v2,…,vk},都存在G中的哈密顿路P包含S且不改变其中元素的次序.本文证明了:对于具有n个顶点的图G,u、v是G中任意两个不相邻的顶点,且d(u)+d(v)≥n+1.如果G是「k+1/2﹁-连通的k-可序图,k是整数且2≤k≤n/12,则G是k-可序哈密顿-连通图.  相似文献   

8.
两类积图的(2,1)-全标号   总被引:3,自引:0,他引:3  
图G的一个k-(2,1)-全标号是一个映射f:V(G)∪E(G)→{0,1,…,k},使得任意2个相邻的点和相邻的边有不同值,且任一对相关联的点和边的值差的绝对值至少为2.G的(2,1)-全标号数λt2(G)定义为G有一个k-(2,1)-全标号的最小的k值.刻画了圈与圈、路与路笛卡尔积图的(2,1)-全标号数.  相似文献   

9.
轮和路的广义Mycielski图的星全染色   总被引:2,自引:0,他引:2  
图G的一个正常全染色被称作G的星全染色,如果G中任意路长为2的点和边着色均不相同.图的全部星k-全着色中最小的数k称为它的星全色数.讨论轮和路的广义Mycielski图的星全染色问题,得到不同情况下它们的星全色数,其中每个点的色集合包含该点及其关联边的颜色.  相似文献   

10.
设G=(V,E)是一个图。集合S■V称为一个k-分支限制控制集,如果S是一个限制控制集且G[S]最多有k个分支。G的k-分支限制控制数是G的最小k-分支限制控制集的基数,记作γkr(G)。证明了若树T有n个顶点,则γkr(T)≥max{「n+2/3┐,n-2(k-1)},而且刻画了可以达到这个下界的树。  相似文献   

11.
中间图的邻点可区别全染色   总被引:1,自引:0,他引:1  
设G是简单连通图,G的k-正常全染色f称为是邻点可区别的,如果对G的任意相邻的两顶点,其点的颜色及关联边的颜色构成的集合不同,称f为G的k-邻点可区别全染色,这样的k中最小者称为G的邻点可区别全色数,本文考虑了图的中间图的邻点可区别全色数,并确定了路、圈、星图和扇图的中间图的邻点可区别全色数.  相似文献   

12.
对于图G内的任意两点u和v,u-v测地线是指u和v之间的最短路.I(u,v)表示位于u-v测地线上所有点的集合,对于V(G)S,I(S)表示所有I(u,v)的并,这里u,v∈S.G的测地数g(G)是使I(S)=V(G)的点集S的最小基数.文章研究了Pm×Fn和Cm×Fn的测地数,这里Pm表示m阶路,Cm表示m阶圈,Fn表示n阶扇图。  相似文献   

13.
设φ为图G的正常k-边染色。 对任意v∈V(G),令fφ(v)=∑uv∈E(G)φ(uv)。 若对每条边uv∈E(G)都有fφ(u)≠fφ(v),则称φ为图G的k-邻和可区别边染色。 图G存在k-邻和可区别边染色的k的最小值称为G的邻和可区别边色数,记作 χ'Σ(G)。 确定了一类稀疏图的邻和可区别边色数,得到:若图G不含孤立边,Δ≥6且mad(G)≤5/2,则 χ'Σ(G)=Δ当且仅当G不含相邻最大度点。  相似文献   

14.
图G的k-路集C(u,v)是连接G中顶点u和v的k条内点不交的路的集合.图G的k-路集C(u,v)是一个k*-路集如果连接顶点u和v的k条内点不交的路包含G中所有的顶点.一个二部图G是k*-带的若G中任意两个属于不同二划分集的顶点之间存在k*-路集.设κ(G)是图G的连通度.一个二部图是超带的若G是i*-带的,1≤i≤κ(G).n维冒泡排序图Bn是二部图,是n-1正则的,有n!个顶点.在本文中,首先证明了Bn是(n-1)*-带的,n≥5,然后得到n维冒泡排序图Bn(n≠3)是超带的.  相似文献   

15.
设k为非负整数,G是一个p点q边图,如果将G的边用k,k+1,k+2,…,k+q-1进行标号,而顶点标号模p运算后各不相同,则称G是k-边优美的.对于所有满足G为k-边优美图的非负整数k所构成的集合称为图G的边优美指标集.该文给出了图G=(V,E)为k-边优美的定义,根据轮图的特殊性质,讨论了S(3,n)为k-边优美图的必要条件.根据所得的必要条件,利用递归的方法构造S(3,n)的k-边优美图标号并给出详细证明,从而完全解决了当n为偶数时S(3,n)的边优美指标集问题.  相似文献   

16.
如果G的任意s个点的导出子图中至少含有t条独立边,则称图G为强-[s,t]图。本文证明了以下结果:设G是k-连通的强-[k+4,2]图,且δ≥k+1,则G或者有Hamilton路或者同构于(∪k+2i=1Hi)∨Gk,其中Hi≌K2,i=1,2…k+2,Gk是含有k个点的任意图。  相似文献   

17.
给定图G,Ramsey数R(G)是最小的正整数N,满足对完全图K_N的边任意红蓝着色,则或者存在红色子图G或者存在蓝色子图G.扫帚图B_(k,m)是将星图K_(1,k)的中心点与路Pm的一个端点黏成一个点得到的树图.由此得到,当k为大于1的正整数时,R(B_(k,2k-1))=4k-2且R(B_(k,4))=2k+3.  相似文献   

18.
设R是有单位元1≠0的有限交换环,R上的单位一-匹配双凯莱图记为GR=BC(R; R×, R×, {0}),其中R×表示R单位的集合。若一个k-正则图G的任意具有|λ|≠k的特征值λ满足|λ|≤2(k-1)1/2,则称这个k-正则图是Ramanujan图。给出R上的单位一-匹配双凯莱图GR及其线图是Ramanujan图的充要条件。  相似文献   

19.
2-距离严格邻点可区别边染色是指图G有一个正常边染色,且任意2个距离为2的顶点的颜色集合互不包含.2-距离严格邻点可区别边色数是指使图G有一个2-距离严格邻点可区别边染色的最小颜色数值,记作χ2-snd(G).采用反证法证明了:若图G是子立方图,则χ2-snd(G)≤7.  相似文献   

20.
设G是k正则连通点可迁图。图G的一个边割S称为限制性边割,如果G-S不含孤立点,最小限制性边割所含的边数λ′称为限制性边连通度。已经证明λ′≤2k-2,等号成立时,称图G是极大限制性边连通的。本文证明了:如果G不是极大限制性边连通的,那么G的顶点集存在一个划分π=(C1,…,Cm),使得由Ch导出的子图同构于一个连通k-1正则点可迁图H,h=1,2,…,m,而且k≤|H|≤2k-3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号