首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为改善现有火焰检测算法参数量大、训练时间长等缺点,本研究提出基于YOLOv4改进的轻量级火焰检测算法。算法以YOLOv4为基本框架,采用MobileNet v3作为主干网络,利用深度可分离卷积替代YOLOv4中颈部网络和检测网络的3×3普通卷积,并将激活函数更换为H-swish函数,构建出一种轻量级火焰检测算法。不仅参数大幅度减少,而且能提升火焰检测精确度,降低火焰漏报率。实验证明,在相同的训练条件下,本研究提出的算法参数量个数降为YOLOv4的18%,训练时间减少44%。当检测相同火焰图像时,与MobileNet v3-DW-YOLOv4算法相比,本研究算法的精确度提升1%,检测速度为每秒46帧,能更好地嵌入到终端设备上进行实时检测。  相似文献   

2.
3.
针对在自然交通场景中道路不同种类目标的边界框大小差异巨大,现有实时算法YOLOv3无法很好地平衡大、小目标的检测精度等问题,重新设计了YOLOv3目标检测算法的特征融合模块,进行多尺度特征拼接,对检测模块进行改进设计,新增2个面向小目标的特征输出模块,得到一种新的具有5个检测尺度的道路目标多尺度检测方法YOLOv3_5d.结果表明:改进后的YOLOv3_5 d算法在通用自动驾驶数据集BDD100 K上的检测平均精度为0.5809,相较于原始YOLOv3的检测平均精度提高了0.0820,检测速度为45.4帧·s-1,满足实时性要求.  相似文献   

4.
5.
针对YOLOv4算法在行人检测中精度低,实时性差的问题,提出一种基于YOLOv4的改进算法。首先将MobileNetv2作为主干网络,在减少参数量的同时保证其特征提取能力,同时在MobileNetv2中加入Bottom-up连接,减少浅层信息的丢失;然后在特征融合网络嵌入卷积模块的注意力机制模块(convolutional block attention module, CBAM)注意力机制,增强特征的表现力;最后在分类与回归网络中加入Inception结构,进一步提高检测速度和增加网络复杂度。结果表明:在VOC数据集上,改进算法比原算法检测效果更佳,实时性更好,其精度提高了2.87%,处理速度提升了29.52 FPS;同时在真实场景下构建的数据集上,改进后的算法比YOLOv4精度提高了2.13%,具有较好的鲁棒性。  相似文献   

6.
针对将YOLOv3通用目标检测算法应用于行人检测时的检测精度低、定位不准确的问题,提出了一种基于YOLOv3的适用于行人体态特征的目标检测算法.在预处理生成先验框部分,将MSCOCO通用数据集改进为MSCOCO中的person子集来生成仅针对行人体态特征的锚框,并将生成先验框的K-means算法改进为K-means++...  相似文献   

7.
针对汽车前置摄像头所拍路况实景中的远距离交通标志占整个画面的比例较小、自动检测较难的问题,本文提出一种改进YOLOv3的卷积神经网络结构.在原YOLOv3算法结构上去掉了13×13这个冗余的大感受野检测层,结合残差结构思想,将深层特征进行上采样,然后与浅层特征图进行张量拼接,得到104×104的尺度检测层,进一步提高对...  相似文献   

8.
马永忠  夏保丽 《广西科学》2023,30(1):139-148
针对现有僵尸网络检测方法检测精度不高和检测时间开销较大的问题,提出一种基于改进Transformer和强化学习的僵尸网络域名生成算法(Domain Generation Algorithm,DGA)的域名检测方法。首先,利用深度可分离卷积替换ResNet和ResNeXt网络中的卷积块,通过减少网络模型参数来降低模型的时间开销;其次,利用改进后的ResNet和ResNeXt网络将域名字符串映射到深度特征空间,构造多尺度特征,强化特征的表达能力;再次,利用长短期记忆神经网络(Long Short-Term Memory,LSTM)对Transformer网络进行改进,在保持字符间相对位置的同时,进一步建立上下文的长距离依赖编码,并在此基础上引入注意力机制,强化模型对关键特征的捕获能力;最后,引入强化学习对模型进行微调,提高DGA域名的检测精度。在多个DGA域名数据集上进行测试验证,结果表明该模型在保持检测时间开销较小的基础上,具有更高的检测精度。  相似文献   

9.
深度神经网络在物体识别和分类中应用广泛,将其用于口罩佩戴检测,有利于提高新冠疫情防控管理工作效率.首先,收集佩戴口罩图片,将样本图片数据集扩充到12000张.然后用Pytorch搭建ResNet-34深度神经网络,经适当预处理,调整学习率大小和批数据量大小,网络在验证集上准确率为98.41%,在测试集上准确率为97.25%.该网络对单张图片的检测用时为0.103秒,拥有较高的检测准确率和效率,能够满足公共场所对口罩佩戴检测的应用需求.  相似文献   

10.
随着经济的快速发展及低碳环保出行方式的普及,电动摩托车投入量逐年上升,但由此带来的安全隐患也随之上升.针对传统的人工检查骑手是否规范佩戴安全帽耗时、耗力且存在漏检等问题,提出一种基于改进YOLOv5的头盔检测算法.首先,针对摩托车头盔大小尺寸不一的问题,使用K-means++算法重新设计初始锚框,增加了网络收敛速度;其次引入坐标注意力机制(Coordinate Attention),增强网络学习特征的表达能力;最后,引入α-IoU损失函数提高目标检测精度.实验表明,改进的YOLOv5模型的mAP达到98.83%,比YOLOv5的平均精度提升了5.29%,符合在道路复杂环境下对电动摩托车驾驶人头盔检测的要求.  相似文献   

11.
针对头部姿态估计中的人脸检测框尺寸难于学习问题和将人脸检测、头部姿态估计分为两阶段的模型中流程复杂、耦合程度高、误差累积严重的问题,本文提出一种基于YOLOv3模型的人脸检测与头部姿态估计融合算法。通过K-means聚类方法对训练集中人脸区域的尺寸进行聚类,得出9组聚类结果,以模拟真实情况下人脸区域的尺寸和比例;通过拓展YOLOv3模型,实现人脸检测和头部姿态估计同时进行,并在3个不同层次的特征图上进行人脸检测和头部姿态估计,实现对特征图的多尺度检测,充分利用了特征图中的信息;采用端到端模式进行训练,简化头部姿态估计任务的处理流程。在CAS-PEAL-R1姿态子集上取得99.23%的预测准确率,在Pointing′04数据集上pitch和yaw方向分别取得了3.79°和4.24°的平均绝对误差。结果表明,本模型在满足实时性要求的前提下,能够出色完成人脸区域检测与头部姿态估计任务,充分证实本文方法的可靠性与实用性。  相似文献   

12.
13.
针对安全帽佩戴检测中存在的误检和漏检的问题,提出一种基于YOLOv5模型改进的安全帽佩戴检测算法。改进模型引入多尺度加权特征融合网络,即在YOLOv5的网络结构中增加一个浅层检测尺度,并引入特征权重进行加权融合,构成新的四尺检测结构,有效地提升图像浅层特征的提取及融合能力;在YOLOv5的Neck网络的BottleneckCSP结构中加入SENet模块,使模型更多地关注目标信息忽略背景信息;针对大分辨率的图像,添加图像切割层,避免多倍下采样造成的小目标特征信息大量丢失。对YOLOv5模型进行改进之后,通过自制的安全帽数据集进行训练检测,mAP和召回率分别达到97.06%、92.54%,与YOLOv5相比较分别提升了4.74%和4.31%。实验结果表明:改进的YOLOv5算法可有效提升安全帽佩戴的检测性能,能够准确识别施工人员的安全帽佩戴情况,从而大大降低施工现场的安全风险。  相似文献   

14.
车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。  相似文献   

15.
为了解决车辆目标检测中准确率低的问题,提出了一种基于改进YOLOv5算法的车辆目标检测.改进后的YOLOv5算法主要是在原来的基础上通过K-means聚类的方法对数据集中的目标边框进行重新聚类、并将CIoU损失函数和DIoU_nms应用于YOLOv5算法来提高目标识别效果.改进后的YOLOv5算法,目标检测mAP达到了85.8%,比改进前的YOLOv5算法提升了1.3%.  相似文献   

16.
针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3).首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络结构;...  相似文献   

17.
针对密集场景下行人检测的目标重叠和尺寸偏小等问题,提出了基于改进YOLOv5的拥挤行人检测算法。在主干网络中嵌入坐标注意力机制,提高模型对目标的精准定位能力;在原算法三尺度检测的基础上增加浅层检测尺度,增强小尺寸目标的检测效果;将部分普通卷积替换为深度可分离卷积,在不影响模型精度的前提下减少模型的计算量和参数量;优化边界框回归损失函数,提升模型精度和加快收敛速度。实验结果表明,与原始的YOLOv5算法相比,改进后YOLOv5算法的平均精度均值提升了7.4个百分点,检测速度达到了56.1帧/s,可以满足密集场景下拥挤行人的实时检测需求。  相似文献   

18.
针对现有的皮肤镜图像分割算法存在边缘分割时效果较差和对中小目标的识别能力较弱等问题。本文提出了一种基于多尺度注意力融合的分割网络MAU-Net(Multi-scale attention U-Net)。MAU-Net网络是以U-Net网络为基础的分割模型,通过本文设计的多尺度注意力模块(MA),在特征提取时融合不同层次的特征,并将重要的目标特征给与一定的权重,从而使网络能更快和更精准的分割出目标区域。实验结果显示,在ISIC2017数据集上平均交并比(MIOU)、精确度(PRE)和kappa值分别为83.61%、93.58%和81.70%,性能比U-Net分别提高了5.27%、2.01%和6.83%;并在ISIC2017挑战赛数据集上进行了消融实验,实验结果验证了MA模型有助于网络性能的提升。本文提出的MAU-Net网络在皮肤病变分割任务中表现优异,同时具有良好的泛化性能。  相似文献   

19.
针对当前无人机目标图像检测方法精度较低和检测速度过慢的问题,提出一种结合轻量级网络和改进多尺度结构的目标检测算法。首先采用MobileNetV3轻量级网络替换YOLOv4的主干网络,减少模型复杂度,提升检测速度;其次,引入改进多尺度结构的PANet网络,增强高维图像特征和低维定位特征的流动叠加,提升对小目标的分类和定位精度;最后,利用K means方法对目标锚框进行参数优化,提升检测效率。同时结合公开数据集和自主拍摄方式构建一个新的无人机目标图像数据集Drone dataset,并基于数据增强的方法开展算法性能实验。实验结果表明,该算法的mAP达到了91.58%,FPS达到了55帧/s,参数量为44.39 M仅是YOLOv4算法的1/6,优于主流的SSD、YOLO系列算法和Faster R CNN算法,实现了对多尺度无人机目标的快速检测。  相似文献   

20.
针对工地、危险区域等场景需要实现同时佩戴安全帽与口罩的自动检测问题,提出一种改进的YOLOv3算法以提高同时检测安全帽和口罩佩戴的准确率.首先,对网络模型中的聚类算法进行优化,使用加权核K-means聚类算法对训练数据集聚类分析,选取更适合小目标检测的Anchor Box,以提高检测的平均精度和速度;然后,优化YOLO...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号