首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了解决传统花朵授粉算法收敛精度较低、易收敛到局部最优等问题,提出了融合动态收敛因子与黄金正弦的花朵授粉算法(DGSFPA).在异花授粉中引入动态收敛因子,来提高算法收敛精度.在自花授粉中进行黄金正弦优化,以增强跳出局部最优的能力.通过与其他3种算法在测试函数上的比较,验证了改进算法具有更高的收敛精度和更快的收敛速度.将DGSFPA应用于求解压力容器设计优化问题中,研究结果表明:改进算法所得4个设计变量值均比其他3种算法所得值小,且其总成本比花朵授粉算法减少5270.82元,比人工蜂群算法减少876.72元,证明了DGSFPA的有效性和可行性.  相似文献   

2.
针对蝴蝶优化算法存在收敛速度慢、求解精度差和易陷入局部最优等缺陷,提出一种融合正弦余弦算法的蝴蝶优化算法.首先在蝴蝶自身认知部分引入非线性自适应因子,其次重新定义香味浓度计算公式,最后在局部搜索阶段引入改进的正弦余弦算法.通过19个基准函数的测试,实验结果表明,本算法在收敛速度、寻优精度和鲁棒性方面均优于蝴蝶优化算法(...  相似文献   

3.
灰狼算法是一种高效的优化技术,但其在一些问题上存在求解精度不高、收敛速度较慢和易于陷入局部最优的缺点。因此,提出了一种改进的灰狼优化算法(MGWO)。该算法引入了3种改进策略:平衡算法全局搜索性和局部开发性的指数规律收敛因子调整策略、提高算法求解精度的自适应位置更新策略和修订动态权重策略。通过两组在10个基准测试函数上...  相似文献   

4.
高瑜  黄森  陈刘鑫  黄军虎 《科学技术与工程》2020,20(28):11605-11611
为了提高微电网的日运转经济效益,本文构建了并网模式下交流微电网运转结构图,建立了并网模式下交流微电网日优化经济调度数学模型,该模型包含有多个子目标函数、多个约束条件。针对传统灰狼优化算法无法很好均衡算法的全局寻优能力和局部寻优能力,寻优精度差的问题,引进一种基于非线性变化的收敛因子均衡算法的全局寻优能力和局部寻优能力,从而提高灰狼算法的寻优精度。采用改进的灰狼算法和原始灰狼算法对四个基准测试函数进行仿真,实验结果表明改进灰狼算法相较于原始灰狼算法能够获得更优解,初步证实了改进灰狼算法的可行性及优越性,再将改进灰狼算法和原始灰狼算法分别应用于并网模式下交流微电网日优化数学模型求解,通过对仿真结果对比分析,证实了改进灰狼算法的确能够更好的提高并网模式下交流微电网的日运转经济效益。  相似文献   

5.
针对基本灰狼优化算法在求解高维复杂优化问题时存在解精度低和易陷入局部最优的缺点,提出一种改进的灰狼优化算法。受粒子群优化算法的启发,设计一种收敛因子a随机动态调整策略以协调算法的全局勘探和局部开采能力;为了增强种群多样性和降低算法陷入局部最优的概率,受差分进化算法的启发,构建一种随机差分变异策略产生新个体。选取6个标准测试函数进行仿真实验。结果表明:在相同的适应度函数评价次数条件下,此算法在求解精度和收敛速度上均优于其他算法。  相似文献   

6.
徐明  龙文 《科学技术与工程》2021,21(20):8544-8551
针对基本灰狼优化算法(grey wolf optimizer,GWO)在求解复杂优化问题时存在解精度低、探索与开发能力不平衡、收敛速度慢和易陷入局部最优的缺点,提出一种基于多策略融合的改进灰狼优化算法.首先,设计一种基于正弦函数的非线性过渡参数策略替代原灰狼优化算法中的线性递减策略,以实现算法从勘探到开发的良好过渡;其次,利用个体自身历史最佳位置和决策层个体共同引导群体进行搜索,以加速算法收敛速度和提高寻优精度;然后,在当前最优灰狼个体上引入小孔成像学习策略产生新的候选个体,以降低算法陷入局部最优的概率.选取6个基准测试函数进行数值实验.结果 表明:改进算法在求解精度和收敛速度指标上均优于其他比较算法.最后,将改进算法用于求解特征选择问题,对10个基准数据集的仿真结果表明,改进算法能有效地提高分类精度和选择最优特征.  相似文献   

7.
控制参数值非线性调整策略的灰狼优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了克服灰狼优化算法在解决函数优化问题时容易陷入局部最优的缺陷,提出采用正弦曲线、对数曲线、正切曲线、余弦曲线和2次曲线的非线性调整策略控制参数值。同时采用变异策略对智能个体位置进行处理,使其位置受适应度值大小影响。对3个标准测试函数进行仿真表明,余弦曲线和2次曲线调整策略优于线性调整策略,其他3种非线性调整策略劣于线性策略。  相似文献   

8.
针对无线传感器网络(WSN)节点在随机部署时,存在分布不均匀的情况,从而导致覆盖率较低的问题,提出了一种改进的灰狼优化(GWO)算法.首先利用Tent混沌映射初始化种群,增加种群的多样性;其次利用改进的非线性收敛因子,平衡算法的全局搜索能力与局部搜索精度;最后将差分进化(DE)算法的变异、交叉的理念融入GWO算法,避免算法陷入局部最优,并提高算法的收敛速度.基本测试函数仿真结果验证了改进算法的有效性,随后将其应用于WSN覆盖优化问题,可以使节点的分布更加均匀,显著提高覆盖率,进而改善网络性能.  相似文献   

9.
李靖  杨帆 《科学技术与工程》2020,20(15):6122-6129
为了解决大任务量作业监测中机器人路径规划问题,提出了一种区域监测的机器人路径规划算法。模拟大任务量监测真实环境进行问题建模。针对传统灰狼优化算法求解模型时全局搜索能力差且易陷入局部最优解的问题,提出了一种改进的灰狼优化算法。引入Logistic混沌映射,以加强初始化种群的多样性;引入一种控制参数的自适应调整策略,以平衡灰狼优化算法的搜索能力和开发能力;引入静态加权平均权重策略,更新种群位置,加快收敛速度。将机器人载电量与路径长度短作为约束,引入K-means算法进行任务聚类,通过改进灰狼优化算法对模型进行离线求解以规划出路径,将大任务量监测作业自动转换成分时分步作业。实验结果表明:通过国际通用6个基准函数进行测试,改进的灰狼优化算法在收敛速度、搜索精度及稳定性上均有明显提高。通过50任务点与100任务点作业场景对机器人路径规划模型进行算法仿真,验证了算法的真实有效性,且任务量越大模型优越性越好,路径缩短比例越高。  相似文献   

10.
针对樽海鞘算法在解决优化问题时存在收敛速度慢,易陷入局部最优解等问题,提出一种基于黄金正弦与重启机制的二进制樽海鞘改进算法.利用佳点集策略进行种群初始化,提高种群多样性;使用黄金正弦算法对樽海鞘领导者位置进行二次更新,提升算法的收敛速度和精度;在追随者位置更新过程中引入重启机制,防止算法陷入局部最优.为验证改进算法的性能,选取8个经典基准函数进行仿真实验,通过标准差评估、Wilcoxon检验及收敛速度对比等方法进行对比分析,结果表明,与现有5种二进制群优化算法相比,改进算法的收敛速度和寻优精度均有明显提升.  相似文献   

11.
针对柔性作业车间调度问题,以最大完工时间最小化为目标提出了一种改进灰狼优化算法(IGWO),采用两段式的编码方式来构造算法个体位置与调度方案之间的关系,使用基于启发式规则的初始化种群方法来提高初始解的质量.为了平衡算法的全局搜索与局部搜索,提出一种基于双曲正切函数的非线性收敛因子公式,并在算法的个体更新阶段提出了一种基于适应度值的加权方法,在算法决策层嵌入了变邻域搜索算法.通过仿真实验表明,算法在求解柔性作业车间调度问题上是有效的.  相似文献   

12.
针对差分进化易陷入局部最优和灰狼算法易早熟停滞的缺点,提出了一种基于差分进化(DE)算法和灰狼(GWO)算法的混合优化算法(DEGWO)。该算法利用差分进化的变异、选择算子维持种群的多样性,然后引入灰狼算法与差分进化的交叉、选择算子进行全局搜索。在整个寻优过程中,反复迭代渐进收敛。选取此3个测试函数进行仿真验证,结果表明,混合优化算法相比于DE算法和GWO算法,其求解精度、收敛速度、搜索能力都有了显著提高。  相似文献   

13.
为了解决孪生支持向量回归机的参数寻优问题,提出了一种基于灰狼优化算法的孪生支持向量回归机。该算法将均方根误差和平均绝对误差作为灰狼优化算法的适应度函数,借助灰狼优化算法的全局寻优能力,以目标范围内生成狼群的位置代表不同的孪生支持向量回归机参数取值,通过有限次数迭代和灰狼优化算法的位置更新机制得到孪生支持向量回归机的最优参数。实验结果表明,该算法能够找到合适的参数;与现有算法相比,该算法的预测性能更佳,寻优时间显著缩短。  相似文献   

14.
针对灰狼优化算法(GWO)在求解复杂优化问题时容易出现收敛速度慢和早熟收敛等缺点,提出了一种改进收敛因子和变异策略的新型灰狼优化算法(C MGWO).为了平衡GWO算法的全局探索能力与局部开发能力,设计了一种基于反余弦函数变化策略的收敛因子;为了进一步提高算法跳出局部最优解的能力,提出了一种新的位置变异策略.仿真实验结...  相似文献   

15.
陈晓梅  周博  蔡烨 《科学技术与工程》2024,24(18):7701-7709
为平衡包含电、热两种能源形式的微网系统内各参与者间的利益关系,本文通过改进灰狼算法提出了一种微网能量管理模型。首先,在充分分析微网结构及其各主体功能的基础上,为综合考虑源-网-荷的决策能力,将主从博弈方法应用于产能商、微网运营商、负荷聚合商之间的互动,建立一主多从的微网能量管理数学模型;其次,针对博弈上层模型高维、非线性的特点,文章在传统灰狼算法基础上,利用Tent映射对种群进行初始化、采用非线性收敛因子平衡种群搜索能力、利用莱维飞行策略降低陷入局部最优的风险。在模型求解时,博弈上层采用改进灰狼算法,下层采用二次规划方法,二者结合以探讨使各主体利益最大的策略;最后,通过算例进行验证,结果表明:文中算法更加高效,所提模型在提高参与者收益,平滑用户负荷分布方面更加优越。  相似文献   

16.
针对标准灰狼算法(GWO)在解决移动机器人路径规划问题时存在初始参数依赖性强、缺乏多样性及易陷入局部极值的缺陷,提出一种基于多策略融合灰狼算法(LTGWO)。首先运用精英化思想将Logistic-Tent复合混沌映射与反向学习结合,优化灰狼种群分布序列;然后引入sigmoid函数修改收敛因子a,平衡算法全局探索与局部开发能力,并改进控制参数C 以更好地拟合灰狼实际捕猎过程;最后加入随适应度值变化的比例权重,提高灰狼个体搜索能力,同时采用种群淘汰策略,淘汰适应度值差的个体,促进种群进化。选用3组不同的栅格地图进行实验,实验结果表明:由LTGWO 算法生成的平均路径长度、路径长度标准差都优于对比算法。  相似文献   

17.
为了提高生产资源的利用率和调度效率,提出了一种基于柯西游走的灰狼优化算法,将其应用于求解柔性作业车间调度问题(FJSP)。在经典灰狼算法的基础上,加入柯西游走策略跳出局部最优;引入非线性收敛因子a控制算法的广度搜索与深度搜索程度;采用混合生成新解的种群更新策略适当增强种群多样性。通过在不同规模的测试用例上进行仿真实验和分析比较,实验结果表明,基于柯西游走的灰狼算法寻优性能稳定,在平衡算法的全局搜索和局部搜索程度方面表现较为出色。  相似文献   

18.
于建芳  刘升 《科学技术与工程》2020,20(11):4202-4209
针对模拟退火算法局部搜索能力不强、收敛速度慢,以及接受准则的盲目性等弊端,提出一种基于黄金正弦的模拟退火算法。首先采用黄金正弦算法的遍历特点优化模拟退火算法的初始值,然后对模拟退火算法的邻域搜索进行扩充,增加基于概率的多种算子邻域搜索和记忆装置,适当提高退火温度等措施,很大程度上提高了算法的全局优化性能。通过物流运输实例对低碳和成本节约型的多目标有能力约束的车辆路径问题(capacitated vehicle routing problem,CVRP)模型求解,以寻找环境友好型绿色路径。实验仿真表明,该混合算法具有很好的优化性能,对于求解此类车辆路径问题具有很好的优化效果。  相似文献   

19.
徐明  羊洋  龙文 《科学技术与工程》2023,23(13):5632-5640
针对基本正弦余弦算法(sine cosine algorithm, SCA)求解高维复杂优化问题时存在精度低、收敛慢和易陷入局部最优等缺点,提出一种改进的SCA(improved sine cosine algorithm, iSCA)。首先,该算法设计出一种基于倒S形函数的非线性转换参数规则替代原有线性策略,从而实现从全局搜索到局部搜索的良好过渡;其次,嵌入个体历史最佳信息修改位置搜索方程以指导寻优过程,进一步改善算法的解精度和加快收敛;最后,引入翻筋斗觅食机制生成新的位置以增加群体多样性,从而降低算法陷入局部最优的概率。选取10个高维基准测试函数、10个UCI高维数据集和2个风电机组故障数据集进行仿真实验,并与基本SCA、MSCA(memory-guided SCA)和I-GWO(improved grey wolf optimizer)算法比较,结果表明,iSCA算法在精度和收敛指标上均优于其他比较方法。  相似文献   

20.
【目的】通过改进灰狼优化算法对医疗锂电池进行剩余寿命预测,从而保障抢救时机并减少医疗事故的目的。【方法】运用小波核极限学习机(Wavelet kernel extreme learning machine,WKELM)与小生境灰狼算法(Niche grey wolf optimization,NGWO)相融合的算法形成改进灰狼优化算法WKELM-NGWO算法。采用NGWO算法对WKELM参数进行优化处理,并将最大化训练集的分类准确度作为目标函数,得到寻优过程的数学模型。采用差分方式对医疗电子设备锂电池容量的时间序列进行处理,得到多维时间序列特征向量,归一化处理获得特征向量,并将其分为训练集和测试集。计算得出每只灰狼个体的适应度值fi,并对适应度值fi进行排序,适应度值fi排在前三的个体位置分别记为Xα,Xβ,Xδ。选择最优的灰狼个体位置作为WKELM参数对数据进行训练后,对心脏起搏器用锂电池和心脏除颤仪用锂电池两种锂电池测试样本进行剩余寿命预测操作。【结果】在相同的预测起始点下,WKELM-NGWO算法的均方根误差(RMSE)误差低于WKELM和NGWO算法,基于融合算法WKELM-NGWO的医疗电子设备锂电池剩余寿命(Remaining useful life)预测曲线更接近电池的退化曲线。【结论】WKELM-NGWO融合算法增强了对不同数据的适应能力,既克服了小波核极限学习机(WKELM)学习速度慢、结构不稳定的问题,也克服了小生境灰狼算法(NGWO)求解精度低、收敛速度慢从而导致跳不出局部最优解的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号