首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以天然石墨为原料,利用改进的Hummers法制备氧化石墨烯,并对其进行X-射线衍射(XRD)和傅里叶变换红外光谱(FT-IR)表征。之后利用一种新型的有机溶剂三缩水甘油基对氨基苯酚(TGPAP)作为相转移剂和表面活性剂,将氧化石墨烯(GO)从水溶液转移到环氧树脂基体中,去除水分,加入固化剂进而得到混合液,最后利用浇铸法得到复合材料。通过万能测试拉力机对复合材料的拉伸性能和弯曲性能进行测试,结果表明氧化石墨烯的加入能够有效增强复合材料的力学性能:在添加0.1%(质量分数)的氧化石墨烯时,复合材料拉伸强度达到最大值77.29 MPa,与不添加氧化石墨烯相比提高了26.60%;在添加1.0%的氧化石墨烯时,拉伸模量达到最大值2 451.99 MPa,与纯环氧树脂相比提高了21.69%。  相似文献   

2.
石墨烯拥有优良的导电性,将石墨烯包覆在镍纤维上,改善镍纤维的电性能.以石墨粉、镍纤维等为原料,利用Hummers法制备氧化石墨烯,采用氢碘酸还原制备石墨烯包覆镍纤维复合材料.研究修饰剂CTAB浓度、氧化石墨烯分散液pH值、还原剂HI用量、还原温度及还原时间等因素对复合材料的影响.利用傅里叶变换红外光谱仪(FT-IR)对...  相似文献   

3.
以离子液体修饰碳糊电极(CILE)作为基底电极,将纳米钯-石墨烯(Pd-GR)复合材料和辣根过氧化物酶(HRP)分层涂布在电极上后用Nafion膜固定,制备了修饰电极(Nafion/HRP/PdGR/CILE).光谱法证明HRP在膜中结构没有发生变化.循环伏安扫描出现一对峰形良好的电化学氧化还原峰,表明HRP与电极之间的直接电子转移得以实现,Pd-GR复合材料的高导电性有利于加快电子传递速率.该HRP修饰电极对三氯乙酸的电催化还原有较好的效果.  相似文献   

4.
通过一步还原法制备了还原氧化石墨烯纳米片负载的铜纳米粒子复合材料(CuNPs-rGO-20%,CuNPs-rGO-80%,CuNPs-rGO-120%),并利用循环伏安法分别在0.1 mol/L KOH水溶液和离子液体(Ionic Liquid,IL)1-丁基-3-甲基咪唑四氟硼酸盐([Bmim]BF4)电解液中进行电...  相似文献   

5.
利用异化金属还原菌Shewanella oneidensis MR-1还原氧化石墨烯,合成S.oneidensis MR-1/还原氧化石墨烯复合材料,通过透射电子显微镜(TEM)、X射线衍射(XRD)、X射线光电子能谱分析(XPS)对复合材料进行表征分析,同时研究该复合材料光催化降解结晶紫的催化效果.结果表明,棒状微生物的表面包裹着还原氧化石墨烯薄膜,从而形成复合材料.在厌氧条件下,可见光可以促进该复合材料对结晶紫的脱色效率;同时,在结晶紫降解过程中,提出了耦合还原氧化石墨烯的光催化作用和S.oneidensis MR-1生物降解作用的机理,为生物光催化降解体系的降解机理提供了新的见解.  相似文献   

6.
采用电化学还原技术制备了还原石墨烯.采用扫描电镜、Raman光谱、AFM等技术表征了石墨烯的形貌和结构特征.采用电化学测试技术研究了还原石墨烯修饰电极的电化学性能及对水合肼(N_2H_4·H_2O)的电催化氧化活性.结果表明,该石墨烯电极材料具有优异的电子传导性能.与裸玻碳电极相比,石墨烯修饰电极对水合肼表现出优异的电催化氧化活性.在最佳的实验条件下,将该石墨烯修饰电极用于水合肼的灵敏检测.在1×10~(-5)~1×10~(-4) mol/L范围内,氧化峰电流与水合肼的浓度呈良好的线性关系.该石墨烯修饰电极材料有望用于环境中水合肼等有机小分子的灵敏检测.  相似文献   

7.
以Hummers法制备氧化石墨,超声剥离得到氧化石墨烯(graphene oxide,GO)。在25℃和90℃两种温度下,以聚乙烯亚胺(polyethyleneimine,PEI)为GO的还原剂和修饰剂,制备了PEI改性石墨烯分散液。光电子能谱和红外光谱揭示了温度对PEI还原GO反应的影响。研究结果表明:25℃时,PEI具有部分还原GO的能力,得到PEI修饰的氧化石墨烯(PEI-GO);90℃时,接枝的PEI逐渐从GO片层上解离,并将GO还原为表面修饰的石墨烯(PEI-RGO)。将石墨烯分散液抽滤组装为PEI-RGO薄膜,发现其电导率为117 S·m~(-1),有望用于石墨烯导电材料。  相似文献   

8.
杂多酸基纳米复合材料在光电催化、生物传感器件等方面有较好的应用前景,其合成方法简单、环保,催化性能良好。利用杂多酸同时作为包覆剂、还原剂和链接剂制备银纳米粒子@多酸-碳纳米管三元纳米复合材料,该材料可以提高修饰电极的抗甲醇干扰性,且具有很高的电催化氧气还原反应(ORR)活性。利用原位还原方法同时还原金属离子与氧化石墨,制备出包括金、铂、钯纳米粒子等贵金属纳米粒子@多酸-石墨烯以及银纳米网@多酸-石墨烯三元纳米复合材料,可作为良好的生物传感材料和燃料电池电极材料。利用高温NH3处理制备银纳米粒子@多酸-氮掺杂石墨炔三元纳米复合材料,可实现无金属高活性ORR电催化。  相似文献   

9.
利用新型碳材料还原氧化石墨稀对TiO_2进行改性,以期提高TiO_2的光催化活性.采用溶剂热法,以氧化石墨烯(GO)和钛酸四丁酯(Ti(OBu)4)为原料,成功制备了不同还原氧化石墨烯含量的RGO/TiO_2纳米复合材料.运用XRD、TEM、FT-IR和UV-vis等手段研究了复合材料的性质,同时以甲基橙(Methyl Orange,MO)为模型,评价了不同反应条件下制备的复合物的光催化性能,讨论了不同还原氧化石墨烯含量、催化时间等对复合物的光催化性能的影响.在甲基橙评价模型基础上,将制得的具有最佳光催化性能的RGO/TiO_2复合材料进行致病大肠杆菌的抗菌实验,以此来检验RGO/TiO_2纳米复合材料的抗菌效果.实验结果表明,采用溶剂热法在180℃下煅烧6h制得RGO/TiO_2纳米复合材料,锐钛矿相TiO_2通过C-O-Ti键均匀地分布在片层还原氧化石墨烯载体上.RGO/TiO_2复合材料对甲基橙溶液的降解率明显高于纯纳米TiO_2.当制备复合材料时GO的初始投加量为40mg时,制得的RGO/TiO_2复合材料对甲基橙的降解率达到50%.同时,该RGO/TiO_2纳米复合材料对致病大肠杆菌有明显的抗菌作用.  相似文献   

10.
以水热法制备了聚苯胺/还原氧化石墨烯复合材料,将其超声分散于乙醇溶液中,滴涂在聚对氨基苯磺酸修饰玻碳电极表面,得到聚苯胺/还原氧化石墨烯/聚对氨基苯磺酸修饰玻碳电极.采用循环伏安法考察了5-羟色胺(5-HT)在修饰电极上的电化学行为.实验结果表明该电极对5-HT的氧化反应过程表现出良好的催化活性.最佳条件下,氧化峰电流与5-HT的浓度在0.10~100.0μmol/L范围呈良好线性关系,其线性方程为I_p(μA)=-0.0419C(μmol/L)-0.4171(R=0.996),检出限为0.032μmol/L.当抗坏血酸和多巴胺的浓度增大到5-HT的50倍时,5-HT峰电流几乎不受影响,表明该修饰电极对5-HT检测具有良好的选择性.  相似文献   

11.
针对聚苯胺作为赝电容超级电容器电极材料时存在循环稳定性差的问题,设计利用还原氧化石墨烯纳米卷包裹聚苯胺纳米纤维.采用高沸点有机溶剂辅助冷冻干燥法制备了聚苯胺纳米纤维@还原氧化石墨烯纳米卷复合材料,利用扫描电子显微镜、透射电子显微镜、能谱分析仪、傅里叶变换红外光谱以及X-射线衍射等对该复合材料的形貌、组成和结构进行表征,并采用循环伏安、恒流充放电、电化学阻抗等方法对其电容性能进行研究.结果表明,利用高沸点有机溶剂辅助冷冻干燥法能够成功将聚苯胺纳米纤维包裹进氧化石墨烯纳米卷中,最终将氧化石墨烯还原后得到聚苯胺纳米纤维@还原氧化石墨烯纳米卷复合材料;该复合材料经过5 000次循环充放电后电容量保持率达到75%;当复合材料中的聚苯胺纳米纤维质量分数为67%时,该复合材料在2.2A/g的电流密度下,质量比电容达到639F/g,表现出优异的电容性能.  相似文献   

12.
为了缓解锂硫电池在充放电过程中的活性成分流失以及过充电问题,本文采用冷冻干燥与后续热处理方法制备得到还原氧化石墨烯包覆的硫/碳复合材料(S@C/FD-rGO),并将其作为锂硫电池正极材料.电化学性能测试结果表明,还原氧化石墨烯的包覆有效抑制了多硫化物的溶解,所制备的S@C/FD-rGO复合材料的首次可逆容量为965.8mAh·g~(-1),循环100圈后可逆容量为488.3mAh·g~(-1),容量保持率为50.6%,相较于未包覆石墨烯的硫/碳复合材料,电化学性能得到显著提高.  相似文献   

13.
利用水热还原法制备了多孔三维石墨烯( 3DGR),按不同质量比将其和离子液 体(IL)[BMIM] PF6混合后制备IL - 3DGR复合材料,滴涂于玻碳电极(GCE)表面制备出相 应的修饰电极(IL - 3DGR/GCE).运用循环伏安法、交流阻抗法和恒电流充放电法测试了复合 材料的电化学性能,考察其电容性能的优劣,结果表明3DGR与[BMIM] PF。质量比为1:125 的复合材料的性能最佳.在1.0 mol.L''1 KOH溶液中,以0.15 mA.CIJI-2电流密度进行1000 次充放电循环测试,其最终比电容量为2. 46mF.CITI以,容量保持率达82. 02%,表现出较好的 电容性能.  相似文献   

14.
以木质素磺酸钠为磺化试剂,制备磺酸基改性氧化石墨烯,然后与环氧树脂复合制备磺酸基改性氧化石墨烯/环氧树脂复合材料,实验结果表明:在环氧树脂中添加磺酸基改性氧化石墨烯进行复合,能够提高环氧树脂的热稳定性及复合材料图层的硬度和附着力,有效提升环氧树脂的防腐蚀性能.  相似文献   

15.
利用电化学方法在石墨烯表面上沉积金-钯纳米粒子,制备了金-钯纳米粒子/石墨烯修饰玻碳电极.扫描电子显微镜和X-射线能谱仪对修饰电极组装过程进行了表征.采用循环伏安法研究了对乙酰氨基酚在修饰电极上的电化学行为,在p H 7.0的磷酸盐缓冲溶液中,对乙酰氨基酚在修饰电极上出现一对明显的氧化还原峰,其氧化还原峰电位分别为0.334V和0.299V.在最佳条件下,对乙酰氨基酚的氧化峰电流与其浓度在5.0×10-7-1.0×10-4mol/L范围内呈良好的线性关系,检出限(S/N=3)为1.0×10-7mol/L.利用该方法对药片中的对乙酰氨基酚含量进行检测,获得的结果令人满意.  相似文献   

16.
化学法制备石墨烯对环氧树脂导电性能的影响   总被引:1,自引:0,他引:1  
通过化学氧化热解膨胀还原法制备了石墨烯,并对石墨烯的化学结构及微观形貌进行表征.将自制的石墨烯以及商业级的碳纳米管、富勒烯、石墨分别作为纳米导电填料加入到环氧树脂中,考察不同碳纳米材料对环氧树脂导电性能的影响.结果表明:所制备的石墨烯是不同于氧化石墨烯和热解膨胀石墨薄层的单层或少数层的二维材料;当石墨烯体积分数为0.25%时,复合材料的电导率发生渗流突变,而当体积分数增大到0.50%时,其电导率为2.02×10-7 S·m-1,导电性能得到显著增强.  相似文献   

17.
用正己基吡啶六氟磷酸盐作为粘合剂制备了离子液体修饰碳糊电极(CILE),将钯-石墨烯(Pd-GR)复合材料修饰于CILE表面制得修饰电极(Pd-GR/CILE),并利用循环伏安法和示差脉冲伏安法(DPV)对木犀草素在该修饰电极上的电化学行为进行研究.结果表明在pH 1.5的磷酸盐缓冲溶液中木犀草素在该电极上循环伏安扫描得一对峰形良好的氧化还原峰,说明木犀草素的电化学反应得以实现.在优化条件下木犀草素的氧化峰电流与其浓度在1.0×10~(-9)~1.0×10~(-6)mol/L内存在线性关系,检测限为3.3×10~(-10)mol/L(3σ).利用本方法测定独一味胶囊中木犀草素的含量,回收率在95.6%~104.8%范围内,相对标准偏差(RSD)低于3.43%.  相似文献   

18.
以氧化石墨烯(GO)为基体,利用钼酸钠为钼源,L-半胱氨酸为硫源,通过水热法成功合成了二硫化钼-石墨烯纳米复合材料(MoS_2-rGO),通过NaBH_4还原氯金酸(HAuCl_4),得到金纳米-二硫化钼-石墨烯纳米复合材料(AuNPs-MoS_2-rGO)。通过紫外-可见吸收光谱法、透射电子显微镜和X射线光电子能谱对材料进行了表征。并且利用该新材料构建了电化学传感器,结果表明,在该复合纳米材料修饰的玻碳电极上,水合肼的氧化过电位明显减小,说明金纳米、二硫化钼和石墨烯对水合肼的催化氧化具有协同作用。用计时电流法实现了对水合肼的灵敏、快速检测,线性范围是0.05~2 000μmol/L,检出限为0.016 7μmol/L(信噪比S/N=3)。回收率在98.0%~105.0%之间。该传感器在水合肼的检测上显示出良好的重现性和稳定性,并且可用于水样的检测,结果令人满意。  相似文献   

19.
采用层层涂布法把石墨烯-二氧化钛(GR-TiO_2)复合材料、血红蛋白(Hb)和Nafion滴涂在固体电极表面制备出相应的蛋白质电化学传感器.为了证明Hb与复合材料混合后其原始构象基本不变,采用光谱技术进行表征.利用循环伏安扫描在Hb修饰电极上出现一对良好对称峰形的准可逆氧化还原峰,表明电活性的Hb发生反应.同时利用此方法求解了电化学参数如电子传递系数和异相电极反应速率常数,考察了该电化学传感器对三氯乙酸的电催化行为.  相似文献   

20.
采用混酸氧化多壁碳纳米管(MWCNTs),然后与含磷化合物2–(6,H–二苯并–5–氧杂–6–膦酰杂–6–苯基)–1,4–对苯二酚(DOPO-HQ)反应,对MWCNTs进行功能化修饰,并用功能化的碳纳米管(MWCNTs-P)对环氧树脂进行改性.对比了MWCNTs与MWCNTs-P对环氧树脂力学性能和阻燃性的影响,结果表明,MWCNTs与MWCNTs-P的加入均能提高环氧树脂的力学性能,MWCNTs-P改性效果更好.当MWCNTs-P添加量为0.5%时,环氧树脂的冲击强度提高了232%;SEM结果显示,加入碳纳米管使环氧树脂复合材料的韧性有一定程度的提高.MWCNTs-P的添加量为1.0%时,复合材料的拉伸性能和弯曲性能最好.极限氧指数(LOI)测试结果表明,MWCNTs-P提高了环氧树脂的阻燃性,MWCNTs-P的添加量为0.5%时,复合材料的LOI达到30.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号