首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在设计大跨结构时,风荷载是被控制的主要因素。为探讨地面粗糙类别、基本风压、阻尼比和风向角对大跨结构风致响应的影响,以重庆某体育场大跨网壳屋盖为研究对象进行了数值模拟分析。计算结果表明:对于大跨结构,采用随机振动分析时需考虑高阶参与振型的影响,当地面粗糙类别由A类向D类变化时,风致响应会逐渐加强,随基本风压的增大,也会使得风致响应逐渐加强,随阻尼比的增大,风致响应会逐渐减弱,风向角的变化对风致响应影响较大。  相似文献   

2.
针对围护结构出现洞口后风致内压与外压联合作用这一造成建筑物严重破坏的主要原因,应用计算流体力学软件ANSYS Fluent 12.0,选用基于Reynolds时均的标准k-ε湍流模型,对低矮房屋单一主洞口及多洞口模型进行不同工况的数值模拟分析.结果表明:单一洞口工况下开孔率对风致内压影响很小,而开洞位置对各表面风致内压分布的影响显著;多洞口工况0°风向角时,平均内风压系数随着洞口面积比的增大而增大,但增大趋势逐渐变缓;纵墙和屋面同时开洞且开洞面积比一定时,结构平均内风压系数随风向角变化显著,且内压分布的不均匀性显著增强.  相似文献   

3.
为了考察某拟建超高层建筑(总高838m)在设计风速下的风致响应,对该大厦进行了多自由度气弹模型风洞试验.模型自振特性测试表明,该气弹模型各横截面对两个正交的水平主轴对称,每个轴向1阶和2阶频率误差分别在1%和28%以内,1阶阻尼比约为2%,平动振型与实际结构有限元模型计算结果较为一致.分析不同风速和风向角下风致响应发现,该大厦顶部在100年重现期设计风速下最大动态侧移为0.89m,且动态位移本身并未使结构顶部位移超标,而10年,50年和100年重现期下风致加速度响应超过规范阈值幅度分别为16%,23%和29%.另外,该大厦横风向涡振使得临界风速附近横风向风致响应明显偏大,如果假定风荷载谱为白噪声,则横风向1阶气动阻尼比对总响应的贡献达37%.若欲保证该建筑在百年一遇风速下加速度在允许范围内,则须使其结构阻尼比在2.9%以上.  相似文献   

4.
广州西塔楼高432 m共103层,属目前华南地区第一高楼,在台风“鲇鱼”的影响下,对其台风特性及风致结构振动进行了现场同步实测,获得了其风场特性、结构动力特性以及风致结构振动响应等相关结果.结果验证了湍流强度随平均风速增大而减小、阵风因子随湍流强度增大而增大等规律,且实测的顺风向与侧风向脉动风速谱均符合Von Karm...  相似文献   

5.
以广州珠江城为例,分析了超高层建筑结构风致振动对于阻尼比和峰值因子取值的敏感性.结果表明:一方面,结构的顶部加速度响应及基底倾覆弯矩响应均随阻尼比的增长呈负指数衰减规律,极端情况下,阻尼比取0.01的加速度响应计算结果比阻尼比取0.04的工况大100%以上;另一方面,由横风向涡激振动引起的基底倾覆弯矩响应对阻尼比的敏感...  相似文献   

6.
基于5个不同坡角、缩尺比为1︰20的双坡低矮房屋风洞试验模型,在3类不同地貌条件下,以风向角、坡角为变量深入研究坡角影响低矮房屋屋面区域体型系数变化规律.参考中国、美国和日本荷载规范对屋面进行区域划分,给出不同屋面划分形式下屋面体型系数,分析坡角、风向角和地貌对屋面分区体型系数的影响.研究结果表明:坡角对低矮房屋屋面不同区域局部体型系数影响较大,随着坡角的增大迎风屋面处体型系数绝对值减小,18.4°坡角房屋背风屋面风压体型系数绝对值最大;屋面划分形式相对应的体型系数数值大小也不同,中国规范给出的体型系数数值偏小;风向角为0°,90°时地貌影响屋面体型系数大于其他风向角,湍流度增大屋面体型系数绝对值呈现递增趋势.  相似文献   

7.
特高压输电塔气弹模型风洞试验研究   总被引:3,自引:0,他引:3  
为进一步了解特高压输电塔风振响应的特点,以正在建设的淮南-上海1000kV特高压线路中的一基双回路直线塔为原型,采用离散刚度法制作了输电塔气弹模型,进行了输电塔在紊流场中不同风速、不同风攻角下的气弹模型风洞试验.试验结果表明:输电塔模型的响应随风速的增大而增大;位移响应受风攻角的影响比较明显,在15°风时位移响应最大;各试验工况下,输电塔模型横风向的振动比较显著,X向和Y向的加速度响应处于同一量级且数值比较接近;Y向的加速度响应在0°风时最大,X向的加速度响应在90°风时最大,但任何工况下,输电塔X向的加速度响应均大于Y向的加速度响应.  相似文献   

8.
依托某工程实例,通过风洞试验测得结构的风压系数时程,利用ANSYS参数化设计语言编制了能够精确求解大跨柔性网架屋面的风振系数及等效静风荷载的程序,将风压系数时程转化为相应的面荷载向量并加载至有限元模型,研究了大跨柔性网架屋面结构的风致振动.结果表明,60°、180°和270°为大跨网架面面结构的最不利风向角,应注意这几个风向角的抗风设计.大跨网架屋面的四周屋檐和两条相互垂直的中线,都是风致振动较大的位置,应采取抗风加固措施.  相似文献   

9.
针对悬索桥近塔处吊索突出的风振问题,开展桥塔尾流区长吊索风振特性及其影响因素研究.基于嵌套网格技术,建立桥塔尾流区长吊索计算流体动力学分析模型,开展了长吊索风振特性分析,并研究了吊索与桥塔距离、吊索阻尼比、折算风速等因素对桥塔尾流区吊索风振响应的影响.研究结果表明,桥塔截面尺寸较大,旋涡脱落频率低,易使长吊索发生大幅振动,且横风向振动尤为显著;塔后吊索横风向振幅随距桥塔的距离呈现先增加后减小的规律;增加阻尼比可有效抑制桥塔尾流区吊索振动响应,对横风向振动的抑振效果比顺风向振动更为明显;主塔尾流引起的长吊索风振响应随折算风速的增加呈现先增大后减小的规律,且当折算风速在4.5~5.5之间时振动最为显著.  相似文献   

10.
通过同步测压刚性模型风洞试验,对设置不同建筑造型悬挑屋盖的风荷载特性进行了研究,讨论了肋条高度、波纹间距对该类屋盖风荷载的影响.结果表明:在所选参数范围内,肋条高度对悬挑屋盖风荷载的作用机制影响不大,但当来流与屋盖波纹呈一定夹角时,波纹间距将在一定程度上改变屋盖波纹部分风压的作用机制,该部分风压功率谱及屋盖正压达最大时的风向角均发生变化.肋条高度对悬挑屋盖最不利负压(0°风向角)影响很小,但随着屋盖肋条高度的增加,屋盖最大正压(110°风向角)逐渐减小.最不利负压工况(0°风向角)时,屋盖平底、波纹部分风压均对波纹间距不敏感,最不利正压工况(130°风向角)时,随着波纹间距的增加,屋盖平底、波纹部分风压均减小,尤其是波纹部分.  相似文献   

11.
基于风洞测压试验,通过改变双并列高层建筑间的间距和风向角,分析双并列且高度不一的高层建筑表面风压分布特性。结果表明,在单栋高层建筑周围加入施扰建筑形成双并列布局后,两建筑相对立面上的风压分布和风压值会发生较大变化。建筑表面的风压极值随着间距的增大而减小,且随着风向角从0°增大至90°,其由自上而下逐级分布逐渐转变为从左到右的规律分布,正负风压极值分别出现在建筑立面左右边缘的拐角处;当风向角为90°时,两建筑立面间形成加速气流,在建筑表面形成较大的负压,影响建筑结构的抗风性能。  相似文献   

12.
针对工程常见的八角伞形膜结构,基于ADINA软件开展结构表面风压和结构风振响应的数值模拟,分析结构风致位移响应、速度响应、加速度响应、等效应力等关键风效应,研究膜结构的矢跨比、风向角、膜初始预张力、膜帽处开敞与封闭情形等关键参数对表面风压和结构风振的影响规律,揭示了此类膜结构风振规律和结构风压系数.研究成果可为此类结构的抗风设计计算提供参考.  相似文献   

13.
为研究风向角对驶出隧道过程中高速列车气动效应的影响,以某型高速动车组列车为研究对象,采用数值模拟方法对隧道内气动压力、列车风风速、流场分布及列车气动荷载进行分析。通过与动模型试验结果进出对比,验证数值模拟方法的准确性。研究结果表明:隧道壁面气动压力峰值及变化幅值最大值出现在隧道内部,且出现位置到隧道出口距离与风向角有关;背风侧气动压力受风向角影响更大,气动压力变化幅值随风向角增大呈现先减小后增大再减小的趋势;出口处列车风风速随风向角增大基本呈现先增大后减小的趋势,30°风向角时列车风风速最大,但迎、背风侧列车风风速峰值出现时刻不同;随着风向角增大,流场分布不对称性增强,列车绕流特性由流线型绕流逐渐过渡到钝体绕流,流动分离点到头车鼻尖的距离呈现先增大后减小最后再增大的变化规律,隧道内流动结构愈加复杂;气动横向力、升力变化幅值随风向角增加呈现先增后减趋势,头车横向力系数最大变化幅值分别是中车、尾车的2.4倍和2.6倍,升力系数最大变化幅值分别是中车、尾车的1.1倍和1.5倍,故保证头车安全是控制整车运行安全的关键;侧风下高速列车驶出隧道情形下的最不利风向角为30°,此时头车发生列车事故风险...  相似文献   

14.
对±1 100 kV特高压长悬臂输电塔进行了有限元动力时程分析,采用单塔模型和塔线体系研究了不同风向作用下塔身和横担的风振响应特性,分析了横担总宽度对输电塔风振响应的影响.结果表明:长悬臂输电塔的一阶振型为扭转振型;随着分析的横担部位不断远离塔身中心,位移响应均方根在X方向略有削弱而在Y方向逐渐增大; 0°风向下塔线体系模型和单塔模型的风振响应较为接近,而在45°风向和90°风向下塔线体系模型的风振响应较大;横担总宽度增大时塔身部位风振响应也相应增大,横担部位风振响应在Y方向增大而在X方向略有减小,且影响效果在不同风向时呈现出一定的规律性.分析结果为长悬臂输电塔的抗风设计提供参考.  相似文献   

15.
分析了肋环型单层曲板网壳结构的风荷载和风振响应,并对采用不同方法计算结构等效静风荷载的精度进行了比较.风洞试验结果表明:肋环型单层曲板网壳结构屋面主要受负风压作用;但在90°风向角下,由于体育馆受前方入口建筑的影响,屋盖边缘局部出现正风压.风振响应分析结果表明:有多阶振型参与结构的风致振动,高阶模态影响不可忽略;为保证结构表面所有节点位移准确,结构的模态耦合项不能忽略.但如果只保证较大位移处的准确性,忽略模态耦合项的SRSS方法也是可取的.利用LRC惯性力法和改进LRC方法计算肋环型单层曲板网壳结构的等效静风荷载,可以保证所有风向角下节点的最大位移等效,但不能保证所有节点的位移等效.  相似文献   

16.
强侧风作用下客车车体气动外形优化   总被引:2,自引:0,他引:2  
采用三维、不可压N-S方程和k-ε双方程湍流模型,利用有限体积法分别对不同截面形状车体在不同风速、不同风向角以及不同车速工况下的气动性能进行模拟.研究结果表明:在不同横风风速下,车体气动力均随着横风风速的增大而增大,而气动力系数基本保持不变;在不同风向角下,车体气动力随着风向角的增加而增大;当风向角增加到75°时,气动力增长率变小,气动力系数也是随风向角的增加而增大;在不同车速下,车体的气动力随车速的增大变化不大,但气动力系数随车速的增大反而减小.  相似文献   

17.
基于缩尺比为1∶20的双坡低矮房屋风洞试验模型,在A、B、C三类不同地貌条件下,以风向角、坡角及湍流度为变量研究低矮房屋屋面易损区局部体型系数分布特征及变化规律试验研究.试验结果表明:风向对低矮房屋屋面局部体型系数影响较大并呈现一定规律性,斜风向作用下为各不同坡角房屋最不利风向角;坡角对低矮房屋屋面不同区域局部体型系数影响不一,最不利体型系数集中在平屋面迎风屋檐及角部区域和坡屋面屋脊;坡角大于30°时,最不利体型系数随湍流度增大而增大;迎风面易损区体型系数随屋面坡角增大而增大,并提出屋面坡角与局部体型系数相应的拟合公式.  相似文献   

18.
单钢管避雷针结构横截面为圆形且基频较低,在运营过程中容易发生风振现象,采用双向流固耦合方法对其进行3维数值风洞模拟,探讨7种风速下钢管避雷针结构受力性能及风振响应,并与现行的国家规范条文对比。分析结果表明:在典型风速下避雷针结构两侧所受横风向风压力最大为1.03 kPa,是顺风向风压力的1.72倍,且在不同节段钢管连接处风压力突变现象显著;当风速大于10 m/s时,避雷针结构所受横风向风压大于规范提供的风荷载标准值,两者相差42%,且结构顶端位移相差30.6%;当风速大于20 m/s时,避雷针结构横风向振动频率与避雷针结构高阶自振频率接近,避雷针结构易发生高阶弯曲振动,存在安全隐患。  相似文献   

19.
超高层建筑质量小、阻尼低,极易在设计风速下产生明显的气动弹性效应,出现明显的气动阻尼.考虑一阶线性弯曲模态,制作了方形截面超高层建筑的单自由度气动弹性模型,高宽比8∶1,模型比例1∶600,进行风洞试验测量了各风速下建筑顶部的加速度响应,采用随机减量方法对全风向下方形截面超高层建筑的气动阻尼进行识别.其中,顺风向和横风向的气动阻尼结果与文献结果趋势吻合良好.研究结果表明:当风向角在84°~90°范围内时(90°为横风向),气动阻尼特性与横风向结果趋势一致;当风向角在0°~12°范围内时(0°为顺风向),气动阻尼特性与顺风向结果趋势一致;在某些特定的风向角下(例如16.5°),临界风速降低,气动负阻尼的起始风速也降低.  相似文献   

20.
基于fluent 6.3标准k-ε模型对我国沿海地区常见的低层双坡房屋屋面表面风压进行数值模拟,研究了不同风向角(α=0°,45°,90°)、不同屋面坡角(H=0°,18°,34°,45°)、有无挑檐3种因素影响下屋面的风压分布情况。结果表明:各参数对屋面风压的影响程度不同,风向角决定了屋面风压的整体布局,坡角对屋面风压分布的影响是整体性的,挑檐则只有局部性的影响。双坡屋面的局部风压峰值一般出现在迎风屋檐或屋脊附近,其值与屋面的坡度及风向角相关。在不同风向角下屋面坡度在18°~34°时,屋面风压值及其变化较小。该模拟分析方法克服了风洞试验存在的费用高、周期长、缩尺比影响大等缺点,可以更方便地辅助低层双坡房屋抗风设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号