首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Morphogen gradients contribute to pattern formation by determining positional information in morphogenetic fields. Interpretation of positional information is thought to rely on direct, concentration-threshold-dependent mechanisms for establishing multiple differential domains of target gene expression. In Drosophila, maternal gradients establish the initial position of boundaries for zygotic gap gene expression, which in turn convey positional information to pair-rule and segment-polarity genes, the latter forming a segmental pre-pattern by the onset of gastrulation. Here we report, on the basis of quantitative gene expression data, substantial anterior shifts in the position of gap domains after their initial establishment. Using a data-driven mathematical modelling approach, we show that these shifts are based on a regulatory mechanism that relies on asymmetric gap-gap cross-repression and does not require the diffusion of gap proteins. Our analysis implies that the threshold-dependent interpretation of maternal morphogen concentration is not sufficient to determine shifting gap domain boundary positions, and suggests that establishing and interpreting positional information are not independent processes in the Drosophila blastoderm.  相似文献   

2.
3.
4.
Post-transcriptional control in the early mouse embryo   总被引:7,自引:0,他引:7  
P Braude  H Pelham  G Flach  R Lobatto 《Nature》1979,282(5734):102-105
  相似文献   

5.
6.
7.
Function of torso in determining the terminal anlagen of the Drosophila embryo   总被引:10,自引:0,他引:10  
The formation of the unsegmented terminal regions of the Drosophila larva, acron and telson requires the function of at least five maternal genes (terminal genes class). In their absence, the telson and acron are not formed. One of them, torso (tor), has gain-of-function alleles which have an opposite phenotype to the lack-of-function (tor-) alleles: the segmented regions of the larval body, thorax and abdomen, are missing, whereas the acron is not affected and the telson is enlarged. In strong gain-of-function mutants, the pair-rule gene fushi tarazu (ftz) is not expressed, demonstrating the suppression of the segmentation process in an early stage of development. The tor gain-of-function effect is neutralized, and segmentation is restored in double mutants with the zygotic gene tailless (tll), which has a phenotype similar (but not identical) to that of tor-. This suggests that tor acts through tll, and that in the gain-of-function alleles of tor, the tll gene product is ectopically expressed at middle positions of the embryo, where it inhibits the expression of segmentation genes like ftz.  相似文献   

8.
S C Guthrie 《Nature》1984,311(5982):149-151
It has long been recognized that cells in early embryos can communicate with each other via a direct cell-to-cell pathway, probably mediated by gap junctions. Low electrical resistance pathways, detected electrophysiologically, have been identified in all species examined so far. However, studies in various embryos on the transfer of molecules larger than small ions (for example, fluorescent dyes in the molecular weight range 350-500) have given conflicting results. In all these studies the ability to transfer dyes from cell to cell was determined without reference to the position of the injected cell in the embryo. In the experiments reported here, cell-cell transfer of the fluorescent dye, Lucifer yellow (molecular weight (Mr) 450) was re-examined in the early Xenopus laevis embryo by injecting the dye into identified cells, as the position of the injected cell within the embryo may be important. At the 32-cell stage, we found that dye transfer often occurred between animal pole blastomeres which were not sisters, as well as between sister cells, and also that Lucifer yellow was indeed transferred via gap junctions. The cell-cell transfer was not uniform within the animal pole; transfer was maximal near the dorsal side and minimal at the ventral side. This pattern may reflect differences in permeability or numbers of gap junctions across the embryo, and could be related to early events in development.  相似文献   

9.
10.
利用显微注射技术将外源DNA与标有生物素的dATP一起导入处于1细胞期的青鱼(Medaka)受精卵细胞质中,鱼卵在25℃孵化一天至胚孔封闭期,从胚胎细胞质中提取DNA,经分子杂交发现外源DNA在胚胎中可进行复制。DNA样品再经核酸电镜分析,发现了几种类型的复制分子,并发现多复制叉及成熟前复制现象。由此认为外源DNA可以多种方式在青鱼早期胚胎细胞质中进行复制。  相似文献   

11.
It has been generally accepted that the mammalian embryo starts its development with all cells identical, and only when inside and outside cells form do differences between cells first emerge. However, recent findings show that cells in the mouse embryo can differ in their developmental fate and potency as early as the four-cell stage. These differences depend on the orientation and order of the cleavage divisions that generated them. Because epigenetic marks are suggested to be involved in sustaining pluripotency, we considered that such developmental properties might be achieved through epigenetic mechanisms. Here we show that modification of histone H3, through the methylation of specific arginine residues, is correlated with cell fate and potency. Levels of H3 methylation at specific arginine residues are maximal in four-cell blastomeres that will contribute to the inner cell mass (ICM) and polar trophectoderm and undertake full development when combined together in chimaeras. Arginine methylation of H3 is minimal in cells whose progeny contributes more to the mural trophectoderm and that show compromised development when combined in chimaeras. This suggests that higher levels of H3 arginine methylation predispose blastomeres to contribute to the pluripotent cells of the ICM. We confirm this prediction by overexpressing the H3-specific arginine methyltransferase CARM1 in individual blastomeres and show that this directs their progeny to the ICM and results in a dramatic upregulation of Nanog and Sox2. Thus, our results identify specific histone modifications as the earliest known epigenetic marker contributing to development of ICM and show that manipulation of epigenetic information influences cell fate determination.  相似文献   

12.
13.
Piotrowska K  Zernicka-Goetz M 《Nature》2001,409(6819):517-521
Despite an apparent lack of determinants that specify cell fate, spatial patterning of the mouse embryo is evident early in development. The axis of the post-implantation egg cylinder can be traced back to organization of the pre-implantation blastocyst. This in turn reflects the organization of the cleavage-stage embryo and the animal-vegetal axis of the zygote. These findings suggest that the cleavage pattern of normal development may be involved in specifying the future embryonic axis; however, how and when this pattern becomes established is unclear. In many animal eggs, the sperm entry position provides a cue for embryonic patterning, but until now no such role has been found in mammals. Here we show that the sperm entry position predicts the plane of initial cleavage of the mouse egg and can define embryonic and abembryonic halves of the future blastocyst. In addition, the cell inheriting the sperm entry position acquires a division advantage and tends to cleave ahead of its sister. As cell identity reflects the timing of the early cleavages, these events together shape the blastocyst whose organization will become translated into axial patterning after implantation. We present a model for axial development that accommodates these findings with the regulative nature of mouse embryos.  相似文献   

14.
Nodal signalling in the epiblast patterns the early mouse embryo.   总被引:2,自引:0,他引:2  
Shortly after implantation the mouse embryo comprises three tissue layers. The founder tissue of the embryo proper, the epiblast, forms a radially symmetric cup of epithelial cells that grows in close apposition to the extra-embryonic ectoderm and the visceral endoderm. This simple cylindrical structure exhibits a distinct molecular pattern along its proximal-distal axis. The anterior-posterior axis of the embryo is positioned later by coordinated cell movements that rotate the pre-existing proximal-distal axis. The transforming growth factor-beta family member Nodal is known to be required for formation of the anterior-posterior axis. Here we show that signals from the epiblast are responsible for the initiation of proximal-distal polarity. Nodal acts to promote posterior cell fates in the epiblast and to maintain molecular pattern in the adjacent extra-embryonic ectoderm. Both of these functions are independent of Smad2. Moreover, Nodal signals from the epiblast also pattern the visceral endoderm by activating the Smad2-dependent pathway required for specification of anterior identity in overlying epiblast cells. Our experiments show that proximal-distal and subsequent anterior-posterior polarity of the pregastrulation embryo result from reciprocal cell-cell interactions between the epiblast and the two extra-embryonic tissues.  相似文献   

15.
Cell type-specific activation of actin genes in the early amphibian embryo   总被引:5,自引:0,他引:5  
T J Mohun  S Brennan  N Dathan  S Fairman  J B Gurdon 《Nature》1984,311(5988):716-721
Muscle actin genes are the earliest yet described to show cell type-specific activation in amphibian embryos. Gene-specific probes show that alpha-skeletal and alpha-cardiac actin genes start to be transcribed simultaneously at the end of gastrulation, but only in those regions of the mesoderm that subsequently form embryonic muscle. Their expression provides a molecular marker for early cell determination.  相似文献   

16.
M Hülskamp  C Schr?der  C Pfeifle  H J?ckle  D Tautz 《Nature》1989,338(6217):629-632
Maternal hunchback activity suppresses the genetic pathway for abdomen formation in the Drosophila embryo. The active component of the posterior group of maternal genes, nanos, acts as a specific repressor of hunchback in the posterior region. Absence of both repressors results in normal embryos, indicating that posterior segmentation may not directly require maternal determinants.  相似文献   

17.
为建立真核基因表达受体系统,以嗜凤梨果蝇胚胎为材料,采用常规方法获取发育4~8h的果蝇胚胎细胞,以改良M3(BF)培养液体外培养,经40d左右的原代培养后行传代培养,以后每隔7d传代一次,传至10代时按照细胞系建立标准检测细胞系的一系列生物学特性.结果显示:细胞维持体外生长将近1年,传至60代.细胞在接种的0~96h内呈指数生长,临界增殖浓度为1.0×106个(细胞) mL.部分细胞染色体呈现异倍化.经液氮冻存的细胞复苏后活性达90%以上.该细胞系是一株成功的细胞系,命名为HY-ANA.  相似文献   

18.
S M Cohen 《Nature》1990,343(6254):173-177
Limb development in Drosophila requires the activity of a proximo-distal pattern-forming system, in addition to the antero-posterior and dorso-ventral pattern-forming systems that subdivide the embryo. Several lines of genetic evidence indicate that the Distal-less gene plays an important part in specifying proximo-distal positional information. The Distal-less locus encodes a homoeodomain-containing protein, which suggests that Distal-less may exert its activity through differential regulation of subordinate genes. The spatially restricted pattern of Distal-less expression allows direct visualization of the limb primordia during early embryogenesis. Here I report that from their inception, the leg primordia span the parasegment boundary. The segment polarity gene wingless seems to have a key part in defining the positions at which leg primordia will develop along the antero-posterior axis of the embryo. This analysis allows a direct molecular visualization of the compartments that subdivide the limb primordia into discrete developmental domains.  相似文献   

19.
Dupont E  Hanganu IL  Kilb W  Hirsch S  Luhmann HJ 《Nature》2006,439(7072):79-83
The immature cerebral cortex self-organizes into local neuronal clusters long before it is activated by patterned sensory inputs. In the cortical anlage of newborn mammals, neurons coassemble through electrical or chemical synapses either spontaneously or by activation of transmitter-gated receptors. The neuronal network and the cellular mechanisms underlying this cortical self-organization process during early development are not completely understood. Here we show in an intact in vitro preparation of the immature mouse cerebral cortex that neurons are functionally coupled in local clusters by means of propagating network oscillations in the beta frequency range. In the newborn mouse, this activity requires an intact subplate and is strongly synchronized within a cortical column by gap junctions. With the developmental disappearance of the subplate at the end of the first postnatal week, activation of NMDA (N-methyl-D-aspartate) receptors in the immature cortical network is essential to generate this columnar activity pattern. Our findings show that during a brief developmental period the cortical network switches from a subplate-driven, gap-junction-coupled syncytium to a synaptic network acting through NMDA receptors to generate synchronized oscillatory activity, which may function as an early functional template for the development of the cortical columnar architecture.  相似文献   

20.
A unique regulatory phase of DNA methylation in the early mammalian embryo   总被引:2,自引:0,他引:2  
Smith ZD  Chan MM  Mikkelsen TS  Gu H  Gnirke A  Regev A  Meissner A 《Nature》2012,484(7394):339-344
DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)--including many CpG island promoters--that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号