首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lou X  Scheuss V  Schneggenburger R 《Nature》2005,435(7041):497-501
Neurotransmitter release is triggered by an increase in the cytosolic Ca2+ concentration ([Ca2+]i), but it is unknown whether the Ca2+-sensitivity of vesicle fusion is modulated during synaptic plasticity. We investigated whether the potentiation of neurotransmitter release by phorbol esters, which target presynaptic protein kinase C (PKC)/munc-13 signalling cascades, exerts a direct effect on the Ca2+-sensitivity of vesicle fusion. Using direct presynaptic Ca2+-manipulation and Ca2+ uncaging at a giant presynaptic terminal, the calyx of Held, we show that phorbol esters potentiate transmitter release by increasing the apparent Ca2+-sensitivity of vesicle fusion. Phorbol esters potentiate Ca2+-evoked release as well as the spontaneous release rate. We explain both effects by an increased fusion 'willingness' in a new allosteric model of Ca2+-activation of vesicle fusion. In agreement with an allosteric mechanism, we observe that the classically high Ca2+ cooperativity in triggering vesicle fusion (approximately 4) is gradually reduced below 3 microM [Ca2+]i, reaching a value of <1 at basal [Ca2+]i. Our data indicate that spontaneous transmitter release close to resting [Ca2+]i is a consequence of an intrinsic property of the molecular machinery that mediates synaptic vesicle fusion.  相似文献   

2.
P T Hawkins  T R Jackson  L R Stephens 《Nature》1992,358(6382):157-159
Although the hormone-stimulated synthesis of 3-phosphorylated inositol lipids is known to form an intracellular signalling system, there is no consensus on the crucial receptor-regulated event in this pathway and it is still not clear which of the intermediates represent potential output signals. We show here that the key step in the synthesis of 3-phosphorylated inositol lipids in 3T3 cells stimulated by platelet-derived growth factor is the activation of a phosphatidylinositol(4,5)-bisphosphate (3)-hydroxy (PtdIns(4,5)P2 3-OH) kinase. A similar conclusion has been applied to explain the actions of formyl-Met-Leu-Phe on neutrophils, and it may be that receptors that couple through intrinsic tyrosine kinases or through G proteins stimulate the same step in 3-phosphorylated inositol lipid metabolism. The close parallel between these two mechanisms for the activation of PtdIns(4,5)P2 3-OH kinase and those described for the activation of another key signalling enzyme, phospholipase C (ref. 7), focuses attention on the product of the PtdIns(4,5)P2 3-OH kinase, PtdIns(3,4,5)P3, as a possible new second messenger.  相似文献   

3.
Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2   总被引:15,自引:0,他引:15  
Wu L  Bauer CS  Zhen XG  Xie C  Yang J 《Nature》2002,419(6910):947-952
Voltage-gated calcium channels (VGCCs) conduct calcium into cells after membrane depolarization and are vital for diverse biological events. They are regulated by various signalling pathways, which has profound functional consequences. The activity of VGCCs decreases with time in whole-cell and inside-out patch-clamp recordings. This rundown reflects persistent intrinsic modulation of VGCCs in intact cells. Although several mechanisms have been reported to contribute to rundown of L-type channels, the mechanism of rundown of other types of VGCC is poorly understood. Here we show that phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), an essential regulator of ion channels and transporters, is crucial for maintaining the activity of P/Q- and N-type channels. Activation of membrane receptors that stimulate hydrolysis of PtdIns(4,5)P2 causes channel inhibition in oocytes and neurons. PtdIns(4,5)P2 also inhibits P/Q-type channels by altering the voltage dependence of channel activation and making the channels more difficult to open. This inhibition is alleviated by phosphorylation by protein kinase A. The dual actions of PtdIns(4,5)P2 and the crosstalk between PtdIns(4,5)P2 and protein kinase A set up a dynamic mechanism through which the activity of VGCCs can be finely tuned by various neurotransmitters, hormones and trophic factors.  相似文献   

4.
H Higashida  D A Brown 《Nature》1986,323(6086):333-335
Hydrolysis of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) produces two prospective intracellular messengers: inositol 1,4,5-trisphosphate (InsP3), which releases Ca2+ from intracellular stores; and diacylglycerol (DG), which activates protein kinase C. Here we show how the formation of these two substances triggered by one external messenger, bradykinin, leads to the appearance of two different sequential membrane conductance changes in the neurone-like NG108-15 neuroblastoma-glioma hybrid cell line. In these cells bradykinin rapidly hydrolyses PtdIns(4,5)P2 to InsP3 and DG, raises intracellular Ca2+ and hyperpolarizes then depolarizes the cell membrane. By voltage-clamp recording we show that the hyperpolarization results from the activation pharmacologically-identifiable species of Ca2+-dependent K+ current. This is also activated by intracellular injections of Ca2+ or InsP3 so may be attributed to the formation and action of InsP3. The subsequent depolarization results primarily from the inhibition of a different, voltage-dependent K+ current, the M-current that is also inhibited by DG activators. Hence we describe for the first time a dual, time-dependent role for these two intracellular messengers in the control of neuronal signalling by a peptide.  相似文献   

5.
T lymphocytes can be activated in a variety of ways, including occupancy of the T cell antigen receptor (TCR) complex or cross-linking of certain cell-surface molecules with antibody. Two of the earliest events seen after stimulation are the hydrolysis of phosphatidylinositol bisphosphate to inositol trisphosphate (Ins P3) and 1,2-diacylglycerol (DAG), and an increase in the concentration of intracellular Ca2+ ([Ca2+]i). Later, the cell secretes lymphokines and expresses lymphokine receptors. It has been postulated that the products of the hydrolysis of phosphatidylinositols (Ptd Ins) and fluctuations in [Ca2+]i are critical 'second messengers', transmitting the signals for the initiation of the later events. We have examined the relationship between these second messengers and the secretion of IL-2 in a murine T cell variant whose missing TCR complex had been reconstituted by gene transfer. Surprisingly, although the IL-2 responses of the transfectant could not be distinguished from the original line expressing the same TCR, Ptd Ins hydrolysis and the increase in [Ca2+]i were substantially reduced or absent in the reconstituted cell. It is therefore possible to dissociate these early biochemical changes from a late biological response, raising questions about the putative causal relationship of these events.  相似文献   

6.
A Imai  M C Gershengorn 《Nature》1987,325(6106):726-728
Phosphatidylinositol (PtdIns), the most abundant phosphoinositide, is the precursor of phosphatidylinositol 4-monophosphate which is converted to phosphatidylinositol 4,5-bisphosphate, the lipid hydrolysed as an early step in signal transduction by many stimuli. It is generally thought that a single enzyme in the endoplasmic reticulum, PtdIns synthase (CDP-diglyceride:myoinositol 3-phosphatidyltransferase, EC 2.7.8.11), is responsible for PtdIns synthesis and that newly synthesized PtdIns is transported to the plasma membrane by exchange proteins. Several investigators have proposed that there are two functionally distinct pools of PtdIns, one responsive to stimulation and the other not, and that the stimulus-responsive pool may be synthesized at a different site within the cell, perhaps within the plasma membrane. Indeed, it was suggested that there is PtdIns synthase activity in plasma membrane isolated from rat liver. GH3 rat pituitary tumour cells are an excellent model system to study stimulation of phosphoinositide metabolism by thyrotropin-releasing hormone (TRH). Conversion of PtdIns to polyphosphoinositides and TRH (and GTP)-activated phosphoinositide hydrolysis are known to occur in plasma membrane isolated from GH3 cells. Here we report that PtdIns synthase activity in the plasma membrane of GH3 cells is distinct from that present in the endoplasmic reticulum. The plasma membrane PtdIns synthase may be responsible for a portion of PtdIns re-synthesis that occurs during cell stimulation.  相似文献   

7.
W S May  N Sahyoun  M Wolf  P Cuatrecasas 《Nature》1985,317(6037):549-551
Phorbol esters are potent tumour-promoting agents that exert pleiotropic effects on cells. Among these are the control of growth, stimulation of release of stored bioactive constituents and regulation of growth-factor surface receptors. Phorbol esters bind to and activate protein kinase C, leading to the phosphorylation of specific protein substrates presumed to be necessary for eliciting the full response. Strong evidence exists that specific binding of tumour promoter occurs at the membrane level in intact cells, resulting in activation of protein kinase C. Recent evidence concerning the release of bioactive constituents from platelets and neutrophils has linked agonist-induced protein kinase C activation and Ca2+ mobilization in a synergistic mechanism. Here we present a novel model of synergism between Ca2+ and phorbol esters that leads to transferrin receptor phosphorylation and down-regulation in HL-60 human leukaemic cells. Raising intracellular Ca2+, although ineffective by itself, increases the potency and rate of action of phorbol ester for activating protein kinase C and mediating transferrin receptor phosphorylation and down-regulation. We propose a molecular model in which increased intracellular Ca2+ recruits protein kinase C to the plasma membrane, thus "priming' the system for activation by phorbol ester.  相似文献   

8.
M Wolf  H LeVine  W S May  P Cuatrecasas  N Sahyoun 《Nature》1985,317(6037):546-549
The activation of protein kinase C by diacylglycerol and by tumour promoters has implicated this enzyme in transmembrane signalling and in the regulation of the cell cycle. In vitro studies revealed that catalytic activity requires the presence of calcium and phospholipids with a preference for phosphatidylserine. Diacylglycerol and tumour promoters such as phorbol esters bind to the enzyme, leading to its activation while sharply increasing its affinity for Ca2+ and phospholipid. Addition of diacylglycerol analogues or phorbol esters to intact cells results in the phosphorylation of specific polypeptides. Several cellular processes, including hormone and neurotransmitter release and receptor down-regulation, are modulated by the activation of protein kinase C, while phorbol ester-induced stimulation of the enzyme in whole cells has been associated with its translocation from the cytoplasm to the plasma membrane. Moreover, the use of Ca2+ ionophores has revealed an apparent synergism between Ca2+ mobilization and protein kinase C activation. This synergism has recently also been found to apply to receptor down-regulation (ref. 23 and accompanying paper). Here we describe a reconstitution system in which intracellular translocation of protein kinase C and the synergism between Ca2+ and enzyme activators can be studied. The results suggest a rationale for concomitant Ca2+ mobilization and diacylglycerol formation in response to some hormones, neurotransmitters and growth factors.  相似文献   

9.
The increase in cytosolic [Ca2+] induced by Ca-mobilizing hormones in liver is mainly due to release of Ca from intracellular stores. For Ca to be released from internal sites a messenger must be formed at the plasma membrane which diffuses into the cytosol to signal Ca release from the intracellular organelles. One of the first actions of these hormones is to cause breakdown of the polyphosphoinositides to form soluble inositol phosphates. Some evidence for the idea that these substances could be the second messenger has been obtained in pancreatic acinar cells. Here we have found that hormone activation of hepatocytes causes rapid breakdown of phosphatidylinositol 4,5-bisphosphate [ PtdIns (4,5)P2] to form inositol trisphosphate ( InsP3 ). When applied to permeabilized hepatocytes, InsP3 releases Ca from non-mitochondrial ATP-dependent pools. This suggests that InsP3 could be the messenger linking Ca-mobilizing receptor activation to intracellular Ca release in liver.  相似文献   

10.
Stimulation of certain receptor tyrosine kinases results in the tyrosine phosphorylation and activation of phospholipase C gamma (PLC gamma), an enzyme that catalyses the hydrolysis of phosphatidylinositol (PtdIns). This hydrolysis generates diacylglycerol and free inositol phosphate, which in turn activate protein kinase C and increase intracellular Ca2+, respectively. PLC gamma physically associates with activated receptor tyrosine kinases, suggesting that it is a substrate for direct phosphorylation by these kinases. Here we report that a fibroblast growth factor (FGF) receptor with a single point mutation at residue 766 replacing tyrosine with phenylalanine fails to associate with PLC gamma in response to FGF. This mutant receptor also failed to mediate PtdIns hydrolysis and Ca2+ mobilization after FGF stimulation. However, the mutant receptor phosphorylated itself and several other cellular proteins, and it mediated mitogenesis in response to FGF. These findings show that a point mutation in the FGF receptor selectively eliminates activation of PLC gamma and that neither Ca2+ mobilization nor PtdIns hydrolysis are required for FGF-induced mitogenesis.  相似文献   

11.
D J Storey  S B Shears  C J Kirk  R H Michell 《Nature》1984,312(5992):374-376
Many receptors for hormones, neurotransmitters and other signals cause hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and effect a rise in cytosolic Ca2+ concentration. The inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) liberated during PtdIns(4,5)P2 breakdown seems to serve as a second messenger that activates the release of Ca2+ from a nonmitochondrial intracellular compartment. As expected if it is an important intracellular messenger, Ins(1,4,5)P3 is relatively rapidly degraded, both within stimulated cells and when added to homogenates of blowfly salivary gland or to permeabilized, but not intact, hepatocytes. Here we report that the dephosphorylation reactions responsible for the conversion of Ins(1,4,5)P3 to free inositol in rat liver are catalysed by two or more enzymes, and that these reactions are distributed between the plasma membrane and cytosol. The Ins(1,4,5)P3 5-phosphatase and inositol 1-phosphate (Ins(1)P) phosphatase of liver appear similar to enzymes described previously in erythrocytes and brain.  相似文献   

12.
A R Wakade  R K Malhotra  T D Wakade 《Nature》1986,321(6071):698-700
Several investigators have shown that tumour promoter phorbol esters mimic the effects of endogenous diacylglycerol to activate a second messenger, protein kinase C. These phorbol esters have proved to be valuable tools for exploring the role of protein kinase C in many cellular functions. We demonstrate here that secretion of catecholamines evoked from the rat adrenal gland by stimulation of splanchnic nerves, excess potassium (K+) and nicotine is facilitated by phorbol 12,13-dibutyrate. An inhibitor of protein kinase C, polymixin B, produced concentration-dependent inhibition of the evoked secretion, and the effect was reversed by the phorbol ester. Furthermore, we show that an increase in the accumulation of radioactively labelled calcium (45Ca) obtained in the adrenal medulla after stimulation with nicotinic agonists and excess K+ is further enhanced by phorbol ester. Muscarine-evoked secretion of catecholamines, which depends on mobilization of intracellularly bound Ca2+, was not associated with an increase in 45Ca2+ uptake, and phorbol ester did not facilitate either catecholamine secretion or 45Ca2+ accumulation. We suggest that protein kinase C is involved in the exocytotic secretion of catecholamines by regulating the influx of Ca2+ through voltage-sensitive and nicotine receptor-linked Ca2+ channels of rat chromaffin cells.  相似文献   

13.
M Whitman  C P Downes  M Keeler  T Keller  L Cantley 《Nature》1988,332(6165):644-646
The generation of second messengers from the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdInsP2) by phosphoinositidase C has been implicated in the mediation of cellular responses to a variety of growth factors and oncogene products. The first step in the production of PtdInsP2 from phosphatidylinositol (PtdIns) is catalysed by PtdIns kinase. A PtdIns kinase activity has been found to associate specifically with several oncogene products, as well as with the platelet-derived growth factor (PDGF) receptor. We have previously identified two biochemically distinct PtdIns kinases in fibroblasts, and have found that only one of these, designated type I, specifically associates with activated tyrosine kinases. We have now characterized the site on the inositol ring phosphorylated by type I PtdIns kinase, and find that this kinase specifically phosphorylates the D-3 ring position to generate a novel phospholipid, phosphatidylinositol-3-phosphate (PtdIns(3)P). In contrast, the main PtdIns kinase in fibroblasts, designated type II, specifically phosphorylates the D-4 position to produce phosphatidylinositol-4-phosphate (PtdIns(4)P), previously considered to be the only form of PtdInsP. We have also tentatively identified PtdIns(3)P as a minor component of total PtdInsP in intact fibroblasts. We propose that type I PtdIns kinase is responsible for the generation of PtdIns(3)P in intact cells, and that this novel phosphoinositide could be important in the transduction of mitogenic and oncogenic signals.  相似文献   

14.
P Hockberger  M Toselli  D Swandulla  H D Lux 《Nature》1989,338(6213):340-342
Diacylglycerol analogues (for example 1,2-oleoylacetylglycerol, OAG) and phorbol esters are activators of protein kinase C, and have been widely used to study the function of this enzyme in both intact cells and cell-free preparations. Electrophysiological studies have shown that these activators can either depress or increase Ca2+ currents, or decrease K+ currents when applied outside the cell. It has been assumed that these effects are mediated by protein kinase C activation. Here we report that micromolar levels of OAG and phorbol esters depress Ca2+ currents in chick sensory neurons independently of their effect as activators of protein kinase C. The depression of the Ca2+ current is rapid and is unaffected by intracellular application of the protein kinase C inhibitors staurosporin, sphingosine and H-7. Furthermore, the activators were ineffective when applied intracellularly, indicating that their site of action is on the outside of the membrane.  相似文献   

15.
W H Moolenaar  L G Tertoolen  S W de Laat 《Nature》1984,312(5992):371-374
There is now good evidence that cytoplasmic pH (pHi) may have an important role in the metabolic activation of quiescent cells. In particular, growth stimulation of mammalian fibroblasts leads to a rapid increase in pHi (refs 3-6), due to activation of a Na+/H+ exchanger in the plasma membrane, and this alkalinization is necessary for the initiation of DNA synthesis. However, the mechanism by which mitogens activate the Na+/H+ exchanger to raise pHi is not known, although an increase in cytoplasmic free Ca2+ ([Ca2+]i) has been postulated as the primary trigger. We now present data suggesting that the Na+/H+ exchanger is set in motion through protein kinase C, a phospholipid- and Ca2+-dependent enzyme normally activated by diacylglycerol produced from inositol phospholipids in response to external stimuli. Using newly developed pH microelectrodes and fluorimetric techniques, we show that a tumour promoting phorbol ester and synthetic diacylglycerol, both potent activators of kinase C (refs 12-15), mimic the action of mitogens in rapidly elevating pHi in different cell types. Furthermore, we demonstrate that, contrary to previous views, an early rise in [Ca2+]i is not essential for the activation of Na+/H+ exchange and the resultant increase in pHi. Finally, we suggest that an alkaline pHi shift, mediated by Na+/H+ exchange, may be a common signal in the action of those hormones which elicit the breakdown of inositol phospholipids.  相似文献   

16.
The primary action of a family of mitogens including bombesin, bradykinin, vasopressin and alpha-thrombin is to activate the hydrolysis of polyphosphoinositides. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by phospholipase C is mediated through coupling of surface receptors to a GTP-binding protein (Gp protein) which, in some cells, is inactivated by the toxin of Bordetella pertussis. It is not known whether this signalling pathway is involved in initiating DNA replication, whereas it has been firmly established that reinitiation of DNA synthesis can be triggered without activation of PtdIns(4,5)P2 hydrolysis by, for example, EGF (epidermal growth factor), FGF (fibroblast growth factor) and insulin/IGF-I (insulin-like growth factor-I), members of a class of mitogens known to activate receptor tyrosine kinases. Taking advantage of the fact that Chinese hamster lung fibroblasts respond to either class of mitogens and that their Gp protein appears to be sensitive to pertussis toxin, we have now analysed the toxin's effect on reinitiation of DNA synthesis and find that it inhibits up to 95% of thrombin-induced mitogenicity without affecting EGF- or FGF-induced DNA synthesis and proliferation. These findings strongly suggest that activation of PtdIns(4,5)P2-phospholipase C has a determinant function in growth control, and confirm the existence of alternative growth factor-signalling pathways independent of polyphosphoinositide breakdown.  相似文献   

17.
Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes   总被引:3,自引:0,他引:3  
Y Oron  N Dascal  E Nadler  M Lupu 《Nature》1985,313(5998):141-143
The enhanced metabolism of phosphoinositides, which is associated with a wide variety of stimuli and physiological responses, has been studied intensively. Berridge and his collaborators demonstrated that the first measurable reaction following cell membrane receptor activation is a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and that the product of this reaction, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), could cause a release of non-mitochondrial calcium. These findings have been verified in other systems. Although the relationship between the hydrolysis of PtdIns(4,5)P2 and the mobilization of intracellular calcium was clearly demonstrated, the direct link between Ins(1,4,5)P3 production and the physiological response was only implied. We have investigated the possibility that the intracellular release of Ins(1,4,5)P3 mediates the muscarinic-cholinergic response is Xenopus oocytes, and we show here that intracellularly injected Ins(1,4,5)P3 mimics the muscarinic depolarizing chloride current in Xenopus oocytes. This is the first demonstration of a direct link between phosphoinositides metabolism and a neuro-transmitter-induced physiological response.  相似文献   

18.
The ability of cells to form cell contacts, adhere to the extracellular matrix, change morphology, and migrate is essential for development, wound healing, metastasis, cell survival and the immune response. These events depend on the binding of integrin to the extracellular matrix, and assembly of focal adhesions, which are complexes comprising scaffolding and signalling proteins organized by adhesion to the extracellular matrix. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) regulates interactions between these proteins, including the interaction of vinculin with actin and talin. The binding of talin to beta-integrin is strengthened by PtdIns(4,5)P(2), suggesting that the basis of focal adhesion assembly is regulated by this lipid mediator. Here we show that the type I phosphatidylinositol phosphate kinase isoform-gamma 661 (PIPKI gamma 661), an enzyme that makes PtdIns(4,5)P(2), is targeted to focal adhesions by an association with talin. PIPKI gamma 661 is tyrosine phosphorylated by focal adhesion associated kinase signalling, increasing both the activity of phosphatidylinositol phosphate kinase and its association with talin. This defines a mechanism for spatial generation of PtdIns(4,5)P(2) at focal adhesions.  相似文献   

19.
Activation of protein kinase C augments evoked transmitter release   总被引:11,自引:0,他引:11  
In view of the emerging role of the phosphoinositide system in cellular communication we examined its involvement in quantal-transmitter release, which is a key element in synaptic transmission. Transmitter release is normally activated by an increase in intracellular calcium, achieved either by entry of calcium ions through the presynaptic membrane or by intracellular calcium liberation. One of the targets of the phosphoinositide signalling system is the enzyme protein kinase C (PKC), which can be activated experimentally by tumour promoting phorbol esters, including 12-O-tetradecanoylphorbol-13-acetate (TPA). Such activation of PKC may be implicated in transmitter release in two ways. First, phorbol esters were found to increase secretion and enhance calcium currents; it might therefore be expected that they would increase synaptic transmitter release. But phorbol esters also inhibit the calcium current in dorsal root ganglion neurones. We report that the phorbol ester TPA augments synaptic transmission at the neuromuscular junction by increasing transmitter liberation. Activation of PKC also depends synaptic depression.  相似文献   

20.
Many cellular functions are regulated by activation of cell-surface receptors that mobilize calcium from internal stores sensitive to inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The nature of these internal calcium stores and their localization in cells is not clear and has been a subject of debate. It was originally suggested that the Ins(1,4,5)P3-sensitive store is the endoplasmic reticulum, but a new organelle, the calciosome, identified by its possession of the calcium-binding protein, calsequestrin, and a Ca2+-ATPase-like protein of relative molecular mass 100,000 (100K), has been described as a potential Ins(1,4,5)P3-sensitive calcium store. Direct evidence on whether the calciosome is the Ins(1,4,5)P3-sensitive store is lacking. Using monoclonal antibodies raised against the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum, we show that bovine adrenal chromaffin cells contain two Ca2+-ATPase-like proteins with distinct subcellular distributions. A 100K Ca2+-ATPase-like protein is diffusely distributed, whereas a 140K Ca2+-ATPase-like protein is restricted to a region in close proximity to the nucleus. In addition, Ins(1,4,5)P3-generating agonists result in a highly localized rise in cytosolic calcium concentration ([Ca2+]i) initiated in a region close to the nucleus, whereas caffeine results in a rise in [Ca2+]i throughout the cytoplasm. Our results indicate that chromaffin cells possess two calcium stores with distinct Ca2+-ATPases and that the organelle with the 100K Ca2+-ATPase is not the Ins(1,4,5)P3-sensitive store.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号