共查询到20条相似文献,搜索用时 94 毫秒
1.
以Apriori算法为例介绍并分析了挖掘最大频繁项集的过程。针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了一种基于数据流频繁项集挖掘的新的EC算法。 相似文献
2.
提出一个数据流环境下的基于概念格和滑动窗口的频繁项集挖掘算法DSFMCL。算法在滑动窗口内分批挖掘新流入的基本窗口频繁概念后,生成概念格的Hasse图。引入最小支持度ζ和误差因子ε对非频繁概念节点进行剪枝操作。Hasse图中各节点包含频繁项集及其支持度信息。随着新基本窗口的Hasse图的生成与滑动窗口进行概念格纵向合并,最终通过对全部Hasse图节点的扫描可以输出所有频繁项集。实验结果表明,该算法具有良好的性能。 相似文献
3.
随着交通、网络流量监控等应用的涌现,不确定数据流频繁项集挖掘成为近年来的研究热点。通常在不确定数据流中,频繁项集所占的比例较小,导致挖掘中无效操作较多。基于这种情况,提出了一种基于预裁剪的不确定数据流频繁项集挖掘算法Prep-UF-Streaming;该算法,不仅能裁剪掉大部分非频繁项集,提高了算法的平均运行时间;而且能够检测到非频繁项集成为频繁项集的可能性,尽量不丢失频繁项集,从而尽可能地提高算法的性能。 相似文献
4.
频繁项集挖掘是关联规则挖掘算法的核心,数据流的实时、无限及不可逆性给传统数据挖掘方法带来很大挑战.频繁闭项集挖掘为频繁项集挖掘提供了完整且低冗余的结果,是近年来数据流频繁项集挖掘研究的热点之一.介绍了数据流频繁闭项集挖掘的相关概念,并从搜索空间的遍历策略、误差结果控制方式等方面对数据流频繁闭项集挖掘算法进行了分析比较. 相似文献
5.
设计了一种不同于传统关联规则挖掘算法(如Apriori算法等)频繁项集产生算法.该算法借鉴一般免疫算法思想,并从新的角度来看频繁项集的定义,避免了传统算法中存在的"项集生成瓶颈"问题.通过对mushroom数据的频繁项集挖掘的实验,与传统方法进行了比较,其结果表明,基于免疫算法的频繁项集挖掘算法在大数据集、低支持度情况下平均挖掘时间短. 相似文献
6.
随着数据库规模的增加或支持度阈值的减少,频繁模式的数量将以指数形式增长,FP-growth算法运行的时空效率将大为降低.本文提出一种基于格的快速频繁项集挖掘算法LFP-growth,算法利用等价关系将原来的搜索空间(格)划分成若干个较小的子空间(子格),通过子格间的迭代分解,将对网格P(I)的频繁项集挖掘转化为对多个子格的并集进行的约束频繁项集挖掘.实验结果和理论分析表明,在挖掘大型数据库时,LFP-growth算法的时间和空间性能均优于FP-growth算法. 相似文献
7.
基于向量的频繁项集挖掘算法研究 总被引:1,自引:0,他引:1
针对Apriori算法寻找频繁项集时,需要多次扫描事务数据库和可能产生大量候选项集的问题,提出了一种向量和数组相结合的频繁项集挖掘算法。该算法不仅实现了只扫描事务数据库一次,而且避免了模式匹配,减少了无价值的候选项集的产生。通过与已有算法的比较,验证了本文算法具有较高的挖掘效率,而且数据库的项数越多,此算法的挖掘效果越明显。 相似文献
8.
在所有频繁项集挖掘算法中,Apriori算法一直是一个经典的算法,但是该算法存在的最大缺陷是要进行多次的数据库扫描并且在挖掘过程中产生大量的候选频繁项集,因此效率很低.提出了利用基于矩阵的方法挖掘频繁项集,很好地避免了这个缺陷. 相似文献
9.
挖掘频繁项集是许多数据挖掘任务中的关键问题,也是关联规则挖掘算法,所以提高频繁项集的生成效率一直是近几年数据挖掘领域研究的热点之一,研究人员从不同的角度对算法进改进以提高算法的效率。该文提出了一种基于位表的频繁项集挖掘算法,用一种特别的数据结构———位表来压缩数据库以便快速产生候选集和支持计数,实验结果表明;此算法大大减少了遍历的时间,是性能比较好的算法。 相似文献
10.
Apriori算法是关联规则挖掘中的经典算法,一直是数据挖掘领域的研究热点。传统的Apriori算法由于产生过多的无用的候选项集以及需要多次扫描数据库导致在一定程度上限制了算法的效率。本文针对这一问题,提出一种新的RF-Apriori算法。该算法首先对数据进行二元处理;然后利用项集的反单调性减少候选项集的产生,从而提高算法效率。实验结果表明,RF -Apriori算法效率明显优于Apriori算法。 相似文献
11.
针对Apriori算法需要多次扫描数据库以及可能产生庞大候选集的瓶颈问题,提出了一种改进的频繁项目集挖掘算法,该算法仅通过一次数据库的扫描生成一个链表,以比特位的方式存储项目在事物数据库中出现的位置,并在不产生候选集的基础上通过逻辑运算与集合运算的直接生成频繁项目集。经过实例分析,结果表明该算法相对于Apriori算法,能够在保证准确率的基础上拥有更低廉的代价。 相似文献
12.
频繁项目集发现算法Apriori的研究 总被引:3,自引:0,他引:3
为了提高Apriori算法的效率,从减少数据库扫描次数的角度出发,提出了一种动态自适应的改进算法.通过比较,该改进算法有效地减少了数据库的扫描次数,明显地提高了Apriori算法的效率,当数据库中总项目数目较大时,该算法更为有效. 相似文献
13.
基于DSCFCI_tree的带项目约束的数据流频繁闭合模式挖掘算法 总被引:1,自引:0,他引:1
根据数据流的特点,提出了一种挖掘约束频繁闭合项集的算法,该算法将数据流分段,用DSCFCI_tree动态存储潜在约束频繁闭合项集,对每一批到来的数据流,首先建立局部DSCFCI_tree,进而对全局DSCFCI_tree进行有效更新并剪枝,从而有效地挖掘整个数据流中的约束频繁闭合模式.实验表明,该算法具有很好的时间和空间效率. 相似文献
14.
基于集合运算的频繁集挖掘优化算法 总被引:1,自引:0,他引:1
挖掘关联规则是数据挖掘中一个重要的课题,产生频繁项目集是其中的一个关键步骤。 提出了一种基于集合运算的频繁项目集挖掘算法,并将该算法与经典算法Apriori进行比较。该算法只需要对数据库扫描一遍。实验表明该算法的效率较好。 相似文献
15.
提出了对基于频繁模式矩阵Fp-array的挖掘的改进算法。首先对各项的投影矩阵预处理划分成若干同维矩阵,并根据同维矩阵的权值对剩余未搜索项进行预先判断,进而对搜索最大频繁项目集进行有效剪枝,减少了搜索范围。经过实验和算法分析,证明了改进算法具有明显的优越性。 相似文献
16.
挖掘最大频繁项目集是许多数据挖掘中的关键问题.为克服早期基于Apriori的最大频繁项目集算法中的缺点,相继有多种挖掘最大频繁项目集方法被提出.其中对基于FP-tree的最大频繁项目集挖掘算法比较多,但对FP-tree中的结点的频度计数关注的很少.通过对FP-tree结构进行了仔细分析后,在FP-tree中结点的频度计数和集合理论的基础上,提出了一种新的最大频繁项目集挖掘算法USDMFIA(using set to discover maximum frequent itemsets algorithm).通过分析比较,显示此算法是有效的. 相似文献
17.
许颖梅 《陕西理工学院学报(自然科学版)》2011,27(4)
计算机网络入侵通常具有高频度特性,因此,识别是否正常访问,对数据流中重复元素的挖掘,给出频度指标,是一种重要的依据.提出一种基于数据流频繁模式的改进型AFP算法,该算法采用滑动窗口树技术,单遍扫描数据流及时捕获网络上的最新模式信息,并将该算法应用在入侵检测模型中正常数据和异常数据的在线挖掘.解决了有限存储和无限数据流的矛盾.实验结果表明,该模型有较高的报警率和较低的误报率. 相似文献
18.
本文针对在事务数据库不变 ,最小支持度和最小可信度发生变化的情况下 ,如何进行关联规则的维护问题进行了研究 ,并提出了一种有效的增量式更新算法 相似文献
19.
奚建清;游进国;汤德佑 《华南理工大学学报(自然科学版)》2009,37(1)
封闭立方体计算的主要任务是在生成一个数据单元时,判断其是否封闭。针对该问题,C-Cubing是新近提出的一种有效的方法,不同以往基于输出或基于元组的方法,它仅通过特定的度量,即封闭性度量,就可以判断出封闭单元。然而随着数据量的增加,C-Cubing的性能下降,因此它的并行算法还有待研究。本文提出基于MapReduce并行框架,采用C-Cubing对封闭立方体并行计算的方法,并在Hadoop上给予了实现。实验结果表明,本方案能够利用廉价的PC机器,有效提高了在较大数据集上计算封闭立方体的性能。 相似文献
20.
在移动计算中挖掘满足用户需求的长频繁邻近类别集时,为了避免产生冗余候选项和减少重复计算量,提出一种基于幂集数递减的约束频繁邻近类别集挖掘算法,其能够提取包含约束条件的长频繁邻近类别集;该算法用幂集数递减序列来产生候选频繁邻近类别集,有效地删除了不满足用户需求的冗余候选项和减少了重复扫描空间实例的计算量.实验表明在挖掘满足用户需求的长频繁邻近类别集时,该算法比现有算法更快速. 相似文献