首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
针对液压缸正反方向运动特性不一致问题,建立包含死区的电液比例阀控非对称液压缸系统的数学模型,分析外负载变化、液压缸结构不对称对系统特性的影响。根据系统的数学模型得到比例阀开口处于线性区域时系统在任意负载状态下的负载流量特性曲线。研究结果表明:随着液压缸两腔面积比的减小,系统的不对称特性增大;随着压力负载增加,系统的非对称性先减弱后增强;随着拉力负载的增加,系统的非对称性增强;实际负载流量比与理论负载流量比相对误差不超过6%,验证了负载流量特性分析的正确性。  相似文献   

2.
为提高存在负叠合量的阀控非对称缸系统的控制性能,提出基于神经网络的逆系统控制方法,利用神经网络逼近的逆模型与原系统复合,将复杂非线性系统转变为线性系统进行控制,建立了阀控非对称缸系统的数学模型,系统在(x_0,u)的邻域内存在相对阶,证明了系统的可逆性;采用基于遗传算法改进的BP神经网络(GA-BP)求解逆模型,并针对伺服阀存在负叠合量,以及流态存在层流和紊流两种状态的问题,建立系统的多个逆模型集,提高了逆系统的求解精度。利用AMESIM和Simulink联合仿真平台,基于参考速度切换的原则,对系统采用比例-积分-微分(PID)闭环控制器。结果表明:普通PID控制的液压缸伸出运动响应和缩回运动响应不一致,伸出运动存在0.20 mm的稳态误差,误差波动范围为0.06 mm,而缩回运动稳态误差较小,约为0.02 mm,但误差波动较大,约为0.09 mm;多逆系统复合控制的伸出缩回运动响应较一致,伸出和缩回运动均存在0.02 mm的稳态误差,误差波动范围为0.04 mm,验证了多逆模型切换控制方法可以消除阀控非对称缸系统的非对称性,降低波动负载干扰影响,提高系统的响应精度。  相似文献   

3.
建立了非零开口的比例阀控非对称液压系统数学模型,分析了外负载和结构参数变化对系统负载流量的影响,得到了非对称系统负载流量特性曲线,提出了非对称控制策略,具体通过对液压缸不同运动方向或者同向不同负载情况时设置不同的最大流量、最小流量、比例放大系数和参考输入以实现液压缸速度基本一致.实验对比了有无非对称控制策略的系统速度响应情况,结果表明:采用非对称控制策略能有效地提高速度响应的一致性,响应时间均在0.2s内,误差小于0.002m/s.并将非对称控制策略应用于大型挤压机节流调速系统,实现了节流调速系统正反方向速度特性基本一致.实验和应用结果表明了特性分析的正确性和非对称控制策略的有效性.  相似文献   

4.
提出了非对称阀控制非对称缸的概念,并对传统的负载流量和负载压力重新进行了定义,依此对非对称阀控制非对称缸的静态特性和动态特性进行了分析,推导了其传递函数及方框图,其推导过程对此类伺服系统的设计具有积极的指导意义.  相似文献   

5.
以由比例溢流阀与比例调速阀控制的阀控缸系统为研究对象,建立液压系统动力学模型;基于LuGre模型对推进液压缸摩擦力进行补偿;建立鬃毛观测器对阀芯运动特性进行估计并通过Lyapunov第一法证明观测器的稳定性;将液压系统的不确定性和外负载干扰进行整合,并选取自适应率进行估计;基于反步积分自适应控制算法,提出了一种压力-速度复合控制策略并对其稳定性进行验证。以液压缸速度控制为基础,将压力误差引入速度期望,实现阀控缸系统的压力-流量复合控制。建立AMESimMatlab阀控缸系统联合仿真平台来对压力-速度复合控制策略性能进行分析。仿真结果表明:压力-速度复合控制器在阀控缸系统速度调节、突变负载以及负载扰动等工况下均具有良好的控制性能;比例溢流阀溢流量的控制有效减小了系统压力的波动和超调;改变压力误差占比可有效改变地层突变时的压力、速度误差分配,在实际工程中,可根据需要通过改变压力误差占比来对复合控制的误差进行分配。  相似文献   

6.
针对阀控非对称缸液压系统存在不确定性和干扰问题,提出综合滑模变结构控制与反馈线性化控制的鲁棒反馈线性化控制策略.利用反馈线性化控制提高非线性系统控制精度,利用变结构控制补偿外界干扰与系统不确定性,并采用边界层法减少滑模变结构控制可能导致系统高频抖动.针对位移信号直接微分得到的加速度信号存在高频噪声问题,提出利用改进二阶滑模算法抑制干扰的影响.通过建立统一的阀控非对称缸液压伺服系统非线性数学模型,以时变负载力扰动为例对系统的动态特性进行了研究,结果表明:鲁棒反馈线性化策略能有效抑制外界的干扰和负载力扰动对液压位置追踪精度的影响,提高了液压控制系统的精度和鲁棒性.  相似文献   

7.
非对称阀控制非对称缸的分析研究   总被引:9,自引:0,他引:9  
提出了非对称阀控制非对称缸的概念 ,并对传统的负载流量和负载压力重新进行了定义 ,依此对非对称阀控制非对称缸的静态特性和动态特性进行了分析 ,推导了其传递函数及方框图 ,其推导过程对此类伺服系统的设计具有积极的指导意义  相似文献   

8.
基于小脑模型神经网络的对称阀控非对称缸复合控制方法   总被引:1,自引:1,他引:0  
针对对称阀控非对称缸系统的不对称性和非线性,为了提高系统控制精度,分析了该系统的工作特性,提出了基于小脑模型神经网络(CMAC)的控制策略,设计了CMAC复合控制器;为验证CMAC复合控制器的有效性,进行了实验研究,并与普通的PID控制器进行比较.实验表明,基于CMAC的复合控制方法无须精确获取系统数学模型和负载状态,适合于对称阀控非对称缸系统的实时控制.  相似文献   

9.
针对对称伺服阀控制单出杆液压缸的特点,按能量守恒原则重新定义了负载压力和负载流量,推导了阀控不对称缸的数学模型,并简要分析出系统的动静态特性  相似文献   

10.
以具有非对称阻尼网络的LHDV型平衡阀为研究对象,建立了平衡阀控非对称液压缸的非线性数学模型,求解绘制了平衡阀阀口位移过流面积曲线,研究了重载低速超越负载液压缸下放工况时平衡阀的动态特性,获得了系统瞬态响应过程中各被控腔压力、通过各阻尼元件的流量、平衡阀主阀阀芯及液压缸位移的变化曲线.结果表明:该非对称阻尼网络具有压力削波、幅值衰减和方向阻尼作用,使平衡阀瞬态响应过程中开启比下降,阀芯运动具有快速开启慢速关闭特性,可有效抑制系统振荡;可调阻尼孔对平衡回路动态特性具有良好的微调特性,非对称阻尼网络具有良好的工况适应性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号