首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
采用高温固相法,以环氧树脂为还原剂合成锂离子电池正极材料Li3V2(PO4)3.通过X射线衍射分析和扫描电子显微镜对样品的晶体结构和微观形貌进行表征,并用恒电流充放电和循环伏安实验研究材料的电化学性能.结果表明所制备的Li3V2(PO4)3为结晶完善的单斜结构,颗粒分布均匀且粒径较小,0.2C时在3.0V~4.3V电压范围的首次放电比容量为126.9mAh/g,30次循环后的比容量为126.0mAh/g,容量保持率达到99.29%.  相似文献   

2.
电解液的溶剂组成影响锂离子电池LiMn2O4正极材料的电化学性能.电解液在电极表面的氧化作用、电解液对电极材料的溶解性和电解液的电导率大小都是影响LiMn2O4电极容量、寿命以及电池倍率充放电性能的重要因素.本文研究了LiMn2O4正极材料在不同混合溶剂的电解液中的电化学性能,探讨了影响LiMn2O4正极材料性能的溶剂因素.  相似文献   

3.
锂离子电池正极材料Li1+xMn2-xO4的Jahn-Teller效应   总被引:1,自引:0,他引:1  
锂离子电池正极材料在循环过程中存在着容量衰减的问题,其中Jahn-Teller效应是锂离子电池正极材料尖晶石LiMn2O4在应用中容量衰减的难点。文章利用溶胶凝胶法制备富锂尖晶石Li1 xMn2-xO4,通过X射线衍射、晶格参数和cMn4 /cMn3 比值等参数,研究尖晶石LiMn2O4的Jahn-Teller效应;结果表明,当煅烧温度t=650℃,x=0.05时,有利于抑制Jahn-Teller效应。  相似文献   

4.
通过溶胶凝胶法制备Li4Ti5O12及锌掺杂Li4-2x/3ZnxTi5-x/3O12(x=0.05,0.10,0.15,0.20)活性材料,并优化了最佳掺杂量为x=0.10。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌及电化学性能表征。结果表明:掺杂适量的锌离子不会改变钛酸锂的尖晶石结构和形貌,1C时,Li3.93Zn0.10Ti4.97O12放电比容量升高且容量保持率为99.74%;而纯相的容量保持率仅为94.30%。  相似文献   

5.
采用高温固相反应法在氩气气氛下合成锂离子电池正极材料Li2FeSiO4、Li2FeSiO4/C和Li2Fe0.9Mn0.1SiO4/C,并采用X线衍射、扫描电镜和电化学方法研究材料的结构与性能.研究结果表明:改性后的Li2FeSiO4/C和Li2Fe0.9Mn0.1SiO4/C材料与Li2FeSiO4具有相同的晶体结构,锰离子掺杂和表面碳包覆有效地提高了材料的比容量和循环性能.以C/16倍率充放电,Li2FeSiO4/C的首次放电容量为112mA·h/g,Li2Fe0.9Mn0.1SiO4/C材料首次放电容量达122 mA·h/g,充放电循环30次后容量衰减仅为9%.  相似文献   

6.
采用固相法合成LiFePO4和LiFePO4/C复合材料,研究了蔗糖分解的碳包覆对LiFePO4材料性能的影响.XRD检测纯LiFePO4为单一的橄榄石相,而LiFePO4/C复合材料中出现高导电物质Fe2P相;SEM显示样品的粒径均在1μm以下,包覆碳样品的晶粒更小,但出现团聚现象.此方法合成的纯LiFePO4初始容量高达136.6 mAh/g.Fe2P的存在使LiFePO4材料的大电流放电能力得到提高.  相似文献   

7.
采用溶胶-凝胶法,经Li2O掺杂,合成了Li4SiO4-xLi2O(x=0.00-0.50)离子导体材料,并用DTA-TG,XRD及交流阻抗等技术对样品进行了测试,结果发现,用溶胶-凝胶法可降低Li4SiO4的合成温度;随Li2O的掺入可增强基质材料的致质材料的致密性提高了其离子的导电性能,而以x=0.30为最佳。  相似文献   

8.
9.
通过共沉淀-高温固相法合成LiNi0.2Li0.2Mn0.6O2固溶体正极材料,并通过球磨-低温热解对LiNi0.2Li0.2Mn0.6O2进行碳包覆;通过XRD,SEM和TEM对包覆前后的样品进行分析和表征.结果表明:球磨包覆前后样品具有层状固溶体结构,但包覆后颗粒粒径有所减小;包覆后LiNi0.2Li0.2Mn0.6O2 0.1C的放电比容量由包覆前的219 mA·h/g增加到246 mA·h/g,5C的放电比容量由包覆前的60 mA·h/g增加到包覆后的125 mA·h/g.50次循环后容量保持率由94.7%提高至97.8%.包覆后正极材料电荷转移阻抗从原来的62 Ω减小至37 Ω.  相似文献   

10.
电解液的溶剂组成影响锂离子电池LiMn2 O4 正极材料的电化学性能 .电解液在电极表面的氧化作用、电解液对电极材料的溶解性和电解液的电导率大小都是影响LiMn2 O4 电极容量、寿命以及电池倍率充放电性能的重要因素 .本文研究了LiMn2 O4 正极材料在不同混合溶剂的电解液中的电化学性能 ,探讨了影响LiMn2 O4 正极材料性能的溶剂因素 .1 实 验使用高温固相合成方法自行制备LiMn2 O4 正极材料 ,晶胞参数a =0 .82 33nm ,微晶尺寸d =5 3nm .实验室自制PC、EC、DMC、DEC、DME、DEE五种溶剂 ,分别…  相似文献   

11.
目的研究LiFePO4在不同锂盐电解液体系中的电化学性能。方法采用恒电流充电、放电和循环伏安方法来进行相关研究。结果在不同锂盐(LiClO4、LiBF4以及LiPF6)和不同碳酸酯混合溶剂(EC-DEC、EC-DMC或者PC-DMC)所组成的电解液中,电极材料在1 M LiClO4/EC-DMC和1 M LiPF6/EC-DMC电解液中的电化学性能较好。其中在1 M LiClO4/EC-DMC电解液中充放电容量最高,而在1 M LiBF4/EC-DMC电解液中的充电、放电容量最低。结论锂盐本身及电解液的电导率对磷酸亚铁锂电化学性能有较大的影响。  相似文献   

12.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

13.
锂离子电池正极材料Li1-xVxFePO4/C的制备及电化学性能   总被引:1,自引:0,他引:1  
采用高温固相法合成了Li1-xVxFePO4/C(x=0,0.01,0.02,0.03,0.04,0.05,0.10)锂离子电池正极材料,通过XRD,SEM,CV,EIS和恒流充放实验研究了不同掺杂量对产物结构和电化学性能的影响。结果表明,少量V的掺杂未影响到LiFePO4的晶体结构,但显著改善了其电化学性能。其中,Li0.98V0.02FePO4/C材料以0.1 C倍率放电时,首次放电容量达到160.9 mAh·g^-1,且循环性能良好。  相似文献   

14.
低温合成LiFePO4/C正极材料及其电化学性能   总被引:2,自引:0,他引:2  
以FeSO4·7H2O,NH4H2PO4和H2O2为初始原料,通过液相沉淀制得前驱体FePO4·2H2O,然后通过碳热还原得到LiFePO4/C.X射线衍射和扫描电镜分析结果表明将FePO4·2H2O,Li2CO3与炭黑球磨2 h后再在Ar气气氛、500℃下煅烧10 h能得到无其他杂相的LiFePO4/C材料,反应剩余的碳黑分布在LiFePO4颗粒之间,阻碍LiFePO4颗粒团聚,并有利于提高其电子导电率;制得的LiFePO4/C的粒径为0.3~0.4μm,且具有良好的循环性能;以0.1C倍率电流放电的首次放电比容量为134.2 mA·h/g,1C倍率下的放电比容量为104 mA·h/g.  相似文献   

15.
晶核剂对Li2O-ZnO-SiO2系玻璃析晶行为及性能的影响   总被引:1,自引:0,他引:1  
采用差热分析、X射线衍射及傅里叶红外吸收光谱等测试手段,分析不同晶棱剂对Li2O-ZnO-SiO2系统玻璃析晶行为和性能的影响。研究结果表明:要获得高热膨胀性微晶玻璃Li2O-ZnO-SiO2,关键在于基础玻璃中方石英晶相的析出,晶棱剂P2O5在该系统玻璃中具有成棱作用,并能促进方石英固溶体的析出,使微晶玻璃获得较好的力学性能(抗弯强度为133MPa,雏氏硬度为638MPa);晶棱剂TiO2对于促进方石英晶相析出的能力较差,且当玻璃中不舍Al2O3时,TiO2的成核效果不明显,获得的晶粒较粗。  相似文献   

16.
采用溶胶凝胶法对原料进行了混合,在氮气保护下利用固相反应烧成了LiFePO4/C复合材料.XRD衍射分析表明,烧成温度和碳源引入量对LiFePO4/C的结晶度有较大的影响,在650~700 ℃范围内烧成的LiFePO4/C结晶完整;当碳源引入量超过20%时,LiFePO4/C衍射峰强度下降.SEM电镜观察到,烧成的LiFePO4/C晶粒细小,大小均匀,晶粒尺寸为100 nm左右.以烧成的LiFePO4/C复合材料作为正极材料进行充放电测试,发现碳源对首次放电容量有较大的影响,分别以乙炔黑、蔗糖和葡萄糖作为碳源时,0.1 C倍率下首次放电容量分别为120,135,162 mA·h/g.对以葡萄糖为碳源烧成的LiFePO4/C复合材料进行放电倍率测试,研究结果表明,该复合材料具有优异的大电流充放电性能.在1 C和3 C高倍率下首次放电容量为0.1 C倍率下放电容量的90%和80%.  相似文献   

17.
A new co-precipitation route was proposed to synthesize LiNi0.8Al0.2−xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8Al0.2−xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8Al0.2−xTixO2 cathode materials are 0.1, 700°C, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8Al0.2−xTixO2.  相似文献   

18.
电极活性材料Li4Ti5O12的制备及电化学性能   总被引:2,自引:0,他引:2  
以LiNO3和TiO2为初始反应物,固相法合成了Li4Ti5O12(M1). X射线衍射实验结果表明,所得粉体为较纯的尖晶石结构的Li4Ti5O12复合氧化物. Li4Ti5O12电极以35 mA·g-1电流密度恒流充放电,首次放电容量达到170 mAh·g-1,接近理论容量,首次充放电效率为92%. 其在大电流密度下充放电性能良好,以175, 350, 875 mA·g-1的电流密度放电,放电容量分别达到了151,140,115 mAh·g-1;与传统方法使用LiOH和TiO2固相合成的Li4Ti5O12(M2)加以比较,3个倍率下的放电容量分别提高了约5%,10%和26%. 循环伏安曲线表明:M1电极电位极化小,可逆性好,电极电化学活性高;M1电极嵌入/脱出锂后交流阻抗测试表明其电化学反应阻抗分别为16和20 Ω.  相似文献   

19.
煅烧制度对Li4Ti5O12材料结构与电化学性能的影响   总被引:1,自引:0,他引:1  
研究高温固相合成Li4Ti5O12的煅烧制度,探讨Li2CO3与TiO2反应生成Li4Ti5O12的机理.分别采用一段煅烧(于800℃保温10 h)、两段煅烧(于800℃保温2 h,于650℃保温8 h)、低温预烧(于650℃保温8 h,于800℃分别保温2,4,6和8 h)3种高温固相煅烧制度合成Li4Ti5O12.研究结果表明:与一段煅烧和两段煅烧制度相比,在低温预烧制度下,随着高温阶段保温时间延长,合成产物中TiO2杂相含量逐渐减少直至消失;原料经650℃低温预烧8 h,再于800℃保温6 h条件下所得产物纯度达95%,仅含有少量富锂杂相Li2TiO3,材料首次放电比容量高达170.1 mA·h·g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号