共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Particle filters have been widely used in nonlinear/nonGaussian Bayesian state estimation problems.However,efficient distribution of the limited number of particles in state space remains a critical issue in designing a particle filter.A simplified unscented particle filter(SUPF) is presented,where particles are drawn partly from the transition prior density(TPD) and partly from the Gaussian approximate posterior density(GAPD) obtained by a unscented Kalman filter.The ratio of the number of particles drawn from TPD to the number of particles drawn from GAPD is adaptively determined by the maximum likelihood ratio(MLR).The MLR is defined to measure how well the particles,drawn from the TPD,match the likelihood model.It is shown that the particle set generated by this sampling strategy is more close to the significant region in state space and tends to yield more accurate results.Simulation results demonstrate that the versatility and estimation accuracy of SUPF exceed that of standard particle filter,extended Kalman particle filter and unscented particle filter. 相似文献
4.
Chunling Wu Chongzhao Han .School of Electronic Control Engineering Chang’an University Xi’an P.R.China .School of Electronic Information Engineering Xi’an Jiaotong University Xi’an 《系统工程与电子技术(英文版)》2010,21(2):175-179
In order to resolve the state estimation problem of nonlinear/non-Gaussian systems,a new kind of quadrature Kalman particle filter (QKPF) is proposed.In this new algorithm,quadrature Kalman filter (QKF) is used for generating the importance density function.It linearizes the nonlinear functions using statistical linear regression method through a set of GaussianHermite quadrature points.It need not compute the Jacobian matrix and is easy to be implemented.Moreover,the importantce density function integrates the latest measurements into system state transition density,so the approximation to the system posterior density is improved.The theoretical analysis and experimental results show that,compared with the unscented partcle filter (UPF),the estimation accuracy of the new particle filter is improved almost by 18%,and its calculation cost is decreased a little.So,QKPF is an effective nonlinear filtering algorithm. 相似文献
5.
Cubature粒子滤波 总被引:6,自引:1,他引:5
非线性非高斯下后验概率密度函数解析值无法获得,需设计合理的重要性密度函数进行逼近。传统粒子滤波(particle filter, PF)直接采用未含最新量测信息的状态转移先验分布函数作为重要性密度函数来逼近后验概率密度函数。针对PF缺乏量测信息的问题,提出一种基于Cubature卡尔曼滤波(Cubature Kalman filter, CKF)重采样的Cubature粒子滤波新算法(Cubature particle filter, CPF)。该算法在先验分布更新阶段融入了最新的观测数据,通过CKF设计重要性密度函数,使其更加接近系统状态后验概率密度。仿真表明CPF估计精度高于PF和扩展卡尔曼滤波(extended particle filter, EPF),与无轨迹粒子滤波(unscented particle filter, UPF)相比,其精度相当,但算法运行时间降低了约20%。 相似文献
6.
粒子滤波是指利用Monte Carlo仿真方法处理递推估计问题的非线性滤波算法,这种方法不受模型线性和Gauss假设的约束,是一种处理非线性非高斯动态系统状态估计的有效算法。在粒子滤波的基础上融合扩展卡尔曼滤波(EKF)算法,融合后的新算法在计算提议概率密度分布时,粒子的产生充分考虑当前时刻的量测,使得粒子的分布更加接近状态的后验概率分布。仿真结果表明,该算法对机动目标有更好的跟踪效果。 相似文献
7.
针对粒子滤波中如何来设计重要性采样函数进行动态粒子传播这个重要问题,提出了一种新的基于观测似然重要性采样的粒子滤波算法,该算法打破了常规粒子滤波先按某一重要性采样函数进行采样,再用观测似然进行粒子权重更新的思路,而是直接根据观测似然进行采样,然后再用先验转移概率进行粒子权重更新.由于算法在采样的过程中用到了观测似然函数,这样保证大多数粒子点都分布在高观测似然区域,极大提高了粒子的利用效率,实验证明基于观测似然重要性采样粒子滤波的性能明显优于当今流行的标准粒子滤波,扩展 Kalman粒子滤波以及unscented粒子滤波. 相似文献
8.
Study of nonlinear filter methods: particle filter 总被引:1,自引:0,他引:1
Zhang Weiming Du Gang Zhong Shan & Zhang Yanhua . Dept. of Information Measurement Technology Instruments Shanghai Jiaotong Univ. Shanghai P.R. China . The Second Academy China Aerospace Science Industry Corporation Beijing P.R. China 《系统工程与电子技术(英文版)》2006,17(1):1-5
1.INTRODUCTIONExtended Kalmanfilter(EKF)is probably the most com-mon and popular tool to deal with nonlinear esti mationproblems.It is based on andli mited by model linearizationand Gauss hypothesis.EKF might cause more errors forthose nonlinear systems while esti mating systemstate andits variance.Moreover the linearization maylead to diver-gence of filtering process.The paper introduces a newap-proachto opti mal nonlinear filtering.It is applied to thenonlinear non-Gauss problem.It … 相似文献
9.
一种改进的推广卡尔曼滤波收敛特性研究 总被引:1,自引:2,他引:1
提出了一种改进的推广卡尔曼滤波算法,这一算法不仅具有良好的数值稳定性,而且计算量较小,并进一步分析研究了这一算法的收敛特性,给出了指数收敛速度,分析结果表明改进的算法得到的滤波器增益和状态估计能很好地跟踪原算法得到的滤波器增益和状态估计。 相似文献
10.
连续推力轨道控制跟踪过程,观测量中包含推力加速度信息,反映轨道机动过程中卫星动力学的模型误差。以跟踪和精确定位空间机动目标为目的,给出基于地面雷达观测,实时估计推力加速度,修正卫星动力学模型的轨道确定算法。建立连续推力控制过程变质量动力学模型,给出常推力变加速度满足的运动学微分方程;建立变加速度估计系统状态方程和扩展卡尔曼滤波轨道确定算法;并给出连续推力控制过程中卫星运动状态关于变加速度的变分运动方程。实际飞行控制中应用表明,通过离散观测数据,实时估计连续推力变加速度,解决连续推力过程轨道精确确定问题是可行的。 相似文献
11.
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one. 相似文献
12.
提出一种基于集合卡尔曼滤波的粒子滤波改进方法。该方法利用集合卡尔曼滤波的最大后验概率估计产生粒子滤波每一时刻各粒子的建议分布函数,使建议分布函数融入最新观测信息的同时,更加符合状态的真实后验概率分布。该方法在对粒子滤波的建议分布进行估计时使用采样方法近似非线性分布,且采样点数灵活可变,使计算精度和算法效率得到提高。仿真结果表明,提出的集合卡尔曼粒子滤波的估计性能明显优于标准粒子滤波、扩展卡尔曼粒子滤波和无迹粒子滤波。 相似文献
13.
对飞行中风场测量值含连续野值较多的问题,提出了将连续野值当作噪声处理的方法。噪声设置为随机游走模型并在状态方程中引入时变系数,利用辅助粒子滤波(APF)处理。与当前的自适应Kalman方法进行了比较,在含10个连续野值的模拟数据处理中,Kalman方法发生了跳变,而APF方法成功地处理了连续野值;APF方法和Kalman方法的平均均方误差分别为0.8313和1.0021。最后,将APF方法用于飞行测量数据处理。结果表明,APF方法能处理更多的连续野值,具有更好的精度和稳定性,适合工程应用。 相似文献
14.
A novel particle filter bandwidth adaption for kernel particle filter (BAKPF) is proposed. Selection of the kernel bandwidth is a critical issue in kernel density estimation (KDE). The plug-in method is adopted to get the global fixed bandwidth by optimizing the asymptotic mean integrated squared error (AMISE) firstly. Then, particle-driven bandwidth selection is invoked in the KDE. To get a more effective allocation of the particles, the KDE with adap- tive bandwidth in the BAKPF is used to approximate the posterior probability density function (PDF) by moving particles toward the posterior. A closed-form expression of the true distribution is given. The simulation results show that the proposed BAKPF performs better than the standard particle filter (PF), unscented particle filter (UPF) and the kernel particle filter (KPF) both in efficiency and estimation precision. 相似文献
15.
Bayesian target tracking based on particle filter 总被引:7,自引:0,他引:7
1 .INTRODUCTIONIn many fields including target tracking, robotics ,signal processing, ti me-series analysis , etc , theKal manfilter is one of the most widely used methodsfor esti mationinlinear Gaussiansystemand measure-ment models . However , the application of theKal man filter to nonlinear systems can be difficult .Most common approach is to use the extendedKal manfilter (EKF) .EKFsi mplylinearizes all non-linear models by using Taylor series expansions andcan, however , lead to p… 相似文献
16.
17.
混杂系统粒子滤波混合状态估计及故障诊断算法 总被引:1,自引:0,他引:1
混杂系统同时包含连续动态特性和离散动态特性,并且两种动态相互作用,使其故障诊断变得更加困难。针对此问题,提出了一种混合系统粒子滤波混合状态估计及故障诊断算法,提高了现有方法的适用范围和诊断效率。针对混杂系统受控迁移、自治迁移和随机迁移等特点,首先利用随机混杂自动机对系统离散状态(包括故障)和连续状态进行统一建模,重点对现有基于扩展卡尔曼粒子滤波的连续估计算法进行改进,支持利用在线监测数据来估计混杂系统各类迁移产生的各种离散和连续状态,最后根据离散状态估计结果快速实现故障诊断。通过对典型非线性混杂系统的故障诊断,证明了该方法的有效性。 相似文献
18.
基于序列蒙特卡罗方法的多模概率假设密度(probability hypothesis density, PHD)滤波算法及其改进方法,在预测过程中依据多个并行的状态转移模型将大量粒子散布到下一时刻目标所有可能出现的状态空间,从而实现目标状态的捕获。由于这些方法大量使用粒子,造成计算量巨大、算法实时性差。为此,提出了基于无迹变换的多模PHD机动目标跟踪方法。该方法利用最新量测信息获得粒子预测过程中的建议密度函数,从而将粒子聚合在目标最可能出现的状态空间邻域中,充分实现粒子的有效利用。仿真实验表明,论文提出的算法不仅显著减少了多模PHD算法的计算量,而且在一定程度上提高了多模PHD算法的精度。 相似文献
19.
迭代无味卡尔曼滤波器的算法实现与应用评价 总被引:3,自引:0,他引:3
为了对各种迭代无味卡尔曼滤波(iterated unscented Kalman filter, IUKF)算法的应用及性能表现给出较为全面、客观的评价,分别导出并探讨了3种IUKF算法之间的内在联系。多种情况下的仿真应用表明,当观测噪声不太大,且该非线性系统状态的后验密度为可用高斯分布很好近似的单峰形式时,或者说是引起系统非线性的状态量是完全瞬时可观测时,选用恰当的IUKF算法,通过2~3次迭代,就可以在保持滤波一致性的条件下,进一步获得显著的精度收益;否则,IUKF相对于无味卡尔曼滤波(unscented Kalman filter, UKF)的迭代收益就难以保证。 相似文献
20.
References: 《系统工程与电子技术(英文版)》2007,18(2):327-333
In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment. Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in eases of large initial misalignment. The UKF has good performance in case of small initial misalignment. 相似文献