首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
利用直流反应磁控溅射的方法在玻璃衬底上沉积了(002)方向高度择优生长的纤锌矿结构的Zn1-xCdxO(x=0,0.2)合金薄膜.利用XRD、XPS、TEM、PL对薄膜的结构和光学性能进行了详细研究.结果表明,随着x=0到x=0.2,(002)衍射峰从34.36°偏移到33.38°,(002)方向的晶面间距从0.260 nm增加到0.268 nm,Zn1-xCdxO薄膜的光学带隙也从3.20 eV减小到2.70 eV,相应的近带边发光峰从393 nm红移到467 nm.另外,我们还从能带结构观点对Zn1-xCdxO薄膜的发光机理进行了研究.  相似文献   

2.
采用射频磁控溅射制备了不同Cu掺杂浓度的ZnO薄膜.以X射线衍射、扫描电镜等对薄膜的结构和形貌进行了表征,XRD和SEM测试结果显示Cu掺杂量为5.0at.%时,Zno9,Cu0.05O薄膜呈纳米柱状结构.同时也对薄膜的光致发光(PL)进行了研究.结果表明,406nm的发光峰源于带边自由激子电子的复合,440nm的发光峰则和薄膜中的锌间隙Zni缺陷有关.  相似文献   

3.
采用溶胶-凝胶技术在石英衬底上制备了Mg0.1Zn0.9O薄膜并研究了退火温度对薄膜结构、形貌和光学性能的影响.XRD结果表明,所有薄膜均呈六角钎锌矿结构,当退火温度高于700℃时,薄膜结晶质量变差;AFM结果显示,随退火温度升高,晶粒尺寸增大,当退火温度高于700℃时,薄膜表面出现团聚颗粒;UV-Vis结果表明,所有薄膜均在紫外区存在较强带边吸收,随退火温度升高吸收边红移;PL谱显示,所有薄膜均存在较强的紫外发射峰,随着退火温度升高,紫外发射峰逐渐红移且在700℃退火处理下紫外发射最强.  相似文献   

4.
采用射频磁控溅射复合靶技术制备了Si-SiO2薄膜,并在各种温度下进行了退火处理.XRD分析表明Si-SiO2薄膜为非晶结构,XPS分析表明样品主要是以SiO1.90的形式存在,它是富硅或缺氧的结构.在室温下观察到了可见光致发光(PL)现象,探测到样品的峰位分别在370m、410m、470m和510nm.结合激发谱对相应的激发与发光中心进行了讨论.另外,还研究了退火温度对其峰位与峰强的影响.  相似文献   

5.
张瑞玲  王莹 《河南科学》2007,25(4):551-553
采用磁控溅射方法在硅片上,成功制备了不同氮偏压下的非晶GaAs1-xNx薄膜.结合AFM和光谱仪等手段对样品进行了表征,结果表明:随着氮气的引入,α-GaAs薄膜的球状颗粒转变为针状颗粒;并且随着氮偏压的升高,针状颗粒密度逐渐增大,薄膜表面的粗糙度逐渐减小;随着氮偏压的升高,a-GaAs1-xNx薄膜的光吸收边明显蓝移.  相似文献   

6.
用磁控溅射法制备Zn1-xVxO(x=0,0.05,0.09,0.11,0.13,0.15)薄膜.研究光的透过率和光致发光谱(PL谱).发现随着V的掺杂量的增加,带隙变宽.PL谱上有一蓝光波带(400~480 nm),而且随着V的掺杂量的增加,发光强度增强.  相似文献   

7.
采用溶胶-凝胶旋涂法在玻璃衬底上制备了Zn1-xCoxO(x=0,0.01,0.03,0.05,0.08,0.12)薄膜.利用显微镜和X射线衍射(XRD)研究了ZnO:Co薄膜的表面形貌和微结构.结果表明,所有ZnO薄膜样品都存在(002)择优取向,尤其是当掺杂浓度为12%时,薄膜c轴择优取向最为显著.振动样品磁强计(VSM)测量表明Zn1-xCoxO薄膜具有室温铁磁性.室温光致发光测量发现,所有样品的PL谱中都出现了较强的蓝光双峰发射和较弱的绿光发射,分析认为这主要是由于Co元素的掺入改变了薄膜的禁带宽度、锌填隙缺陷和氧位错缺陷浓度,其中长波长的蓝光峰和绿光峰都能够通过掺杂进行控制.基于上面的测量结果,探讨了不同波段光发射的机理与掺杂状态之间的关系.  相似文献   

8.
采用磁控溅射法(RF)在玻璃衬底上沉积不同Al含量的ZnO薄膜,利用X 射线衍射(XRD)、原子力显微镜(AFM)和紫外分光光度计研究了不同浓度的掺杂对薄膜结构和光学性能的影响.结果显示:所有样品都呈现出较强的(002)衍射峰,有较好的c轴择优取向;薄膜表面平整光滑,晶界较明显;薄膜的平均透射率均在85%以上,并随着Al掺杂量的增加而降低;随着Al掺杂量的增加,薄膜的光学带隙值先增大,后减小,吸收边先蓝移,后红移.这与量子限制模型计算结果的变化趋势完全一致.  相似文献   

9.
采用电子辅助热丝CVD方法在Si衬底上制备出金刚石薄膜,用扫描电子显微镜(SEM).Raman光谱和红外吸收光谱等研究方法对金刚石薄膜的结构及其红外增透性进行了详尽的研究。  相似文献   

10.
11.
铝掺杂氧化锌薄膜的光学性能及其微结构研究   总被引:1,自引:0,他引:1  
以氧化铝(Al2O3)掺杂的氧化锌(Zn O)陶瓷靶作为溅射靶材,采用射频磁控溅射工艺在玻璃基片上制备了具有c轴择优取向的铝掺杂氧化锌(Zn O:Al)薄膜样品.通过可见-紫外光分光光度计和X射线衍射仪的测试表征,研究了生长温度对薄膜光学性能及其微结构的影响.实验结果表明:薄膜性能和微观结构与生长温度密切相关.随着生长温度的升高,样品的可见光平均透过率、(002)择优取向程度和晶粒尺寸均呈非单调变化,生长温度为640 K的样品具有最好的透光性能和晶体质量.同时薄膜样品的折射率均表现为正常色散特性,其光学能隙随生长温度升高而单调增大.与未掺杂Zn O块材的能隙相比,所有Zn O:Al薄膜样品的直接光学能隙均变宽.  相似文献   

12.
TiN/AlN纳米混合膜的微结构及力学性能   总被引:3,自引:3,他引:3  
通过双靶轮流反应溅射的工艺方法制备了TiN/AlN纳米混合膜.采用XRD衍射、TEM和显微硬度等测试方法对TiN/AlN纳米混合膜的微结构和力学性能进行了研究.结果表明,TiN/AlN纳米混合膜的晶粒大小为10~20nm;薄膜总体表现出硬度增强效果,在TiN∶AlN(体积比)≈1∶1时,薄膜硬度获得极大值HK32.25GPa.  相似文献   

13.
在不同氧浓度下,采用直流反应磁控溅射技术在玻璃基片上制备了Ti掺杂的WO3薄膜并在450℃退火。用X射线衍射(XRD)、分光光度计、台阶仪等对薄膜的结构和光学性质进行表征,分析了不同氧浓度对气敏薄膜的透光率、微结构及光学带隙的影响。结果表明,氧浓度增大,沉积速率越慢,膜厚度减小,薄膜的平均晶粒尺寸增大,晶面间距增大;透射率曲线随着氧浓度的增加逐渐向短波方向移动,表明薄膜的光学带隙宽度随氧浓度的增大而变大。  相似文献   

14.
氧浓度对磁控溅射Ti/WO3薄膜光学性能的影响   总被引:1,自引:1,他引:0  
在不同氧浓度下,采用直流反应磁控溅射技术在玻璃基片上制备了Ti掺杂的WO3 薄膜并在450 ℃退火.用X射线衍射(XRD)、分光光度计、台阶仪等对薄膜的结构和光学性质进行表征,分析了不同氧浓度对气敏薄膜的透光率、微结构及光学带隙的影响.结果表明,氧浓度增大,沉积速率越慢,膜厚度减小,薄膜的平均晶粒尺寸增大,晶面间距增大;透射率曲线随着氧浓度的增加逐渐向短波方向移动,表明薄膜的光学带隙宽度随氧浓度的增大而变大.  相似文献   

15.
N2分压对磁控溅射NbN薄膜微结构与力学性能的影响   总被引:8,自引:1,他引:8  
采用反应磁控溅射法在不同的氮分压下制备了一系列NbN薄膜.用XRD和TEM表征了薄膜的相组成和微观结构,力学探针测量了薄膜的硬度和弹性模量,AFM观察了薄膜的表面形貌并测量了压痕尺寸以校验硬度值的准确性.研究了氮分压对薄膜相组成、微结构和力学性能的影响.结果表明,氮分压对薄膜的沉积速率、相组成、硬度和弹性模量均有明显的影响:低氮分压下,薄膜的沉积速率较高,制备的薄膜样品为六方β-Nb2N和立方δ-NbN两相结构;随氮分压的升高,薄膜形成δ-NbN单相组织,相应地,薄膜获得最高的硬度(36.6GPa)和弹性模量(457GPa);进一步升高氮分压,获得的薄膜为δ-NbN和六方ε-NbN的两相组织,其硬度和模量亦有所降低.  相似文献   

16.
研究Ga掺杂ZnO(GZO)和Cu薄膜形成的GZO/Cu/GZO多层薄膜体系,以期提高透明导电薄膜的综合性能。GZO/Cu/GZO多层薄膜由直流磁控溅射技术在室温下制备,研究Cu层厚度对多层薄膜结构、电学和光学性能的影响。结果表明GZO/Cu/GZO多层薄膜具有较好的结晶性能。随着Cu层厚度的增加,多层薄膜的可见光透射率有所降低,同时电学性能大幅度提升。在Cu层厚度为7.5 nm时,GZO/Cu/GZO多层薄膜获得最优的光电综合性能指标,且相对于单层GZO薄膜ΦTC因子从7.65×10-5Ω-1增加到1.48×10-3Ω-1。  相似文献   

17.
采用Zn O:Ga3O2高密度陶瓷靶作为溅射源材料,利用射频磁控溅射技术在玻璃基片上制备了镓锌氧化物(Ga Zn O)半导体薄膜.基于X射线衍射仪的测试表征,研究了薄膜厚度对Ga Zn O样品晶粒生长特性和微结构性能的影响.研究结果表明:所制备的Ga Zn O样品为多晶薄膜,并且都具有六角纤锌矿型结构和(002)晶向的择优取向生长特性;其(002)取向程度、结晶性能和微结构参数等均与薄膜厚度密切相关.随着薄膜厚度的增大,Ga Zn O样品的(002)择优取向程度和晶粒尺寸表现为先增大后减小,而位错密度和晶格应变则表现为先减小后增大.当薄膜厚度为510 nm时,Ga Zn O样品具有最大的(002)晶向织构系数(2.959)、最大的晶粒尺寸(97.8 nm)、最小的位错密度(1.044×1014m-2)和最小的晶格应变(5.887×10-4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号