首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
低掺杂多晶硅薄膜晶体管阈值电压的修正模型   总被引:2,自引:1,他引:1  
对低掺杂多晶硅薄膜晶体管的表面势进行分析,将表面势开始偏离亚阈值区、沟道电流迅速增加时所对应的栅压作为晶体管的阈值电压.考虑到多晶硅薄膜的陷阱态密度为单指数分布,通过对低掺杂多晶硅薄膜晶体管的表面势进行求解,推导出一个多晶硅薄膜晶体管阈值电压解析模型,并采用数值仿真方法对模型进行了验证.结果表明:新模型所得到的阈值电压与采用二次导数法提取的阈值电压相吻合.  相似文献   

2.
提出一种用于电路模拟的基于表面势的多晶硅薄膜晶体管(poly-Si TFTs)的电流和电容分析模型.采用非迭代方法计算poly-Si TFTs表面势随端电压的变化,从而大大地提高了上述模型的计算效率.基于表面势的解析计算和薄层电荷方法,提出了包括小尺寸效应和翘曲效应的电流电压模型.同时,文中还提出了基于电荷的电容模型.电流和电容模型在线性区和饱和区都是连续和准确的,不需要没有物理意义的光滑处理.与实验数据的比较发现,模型和实验数据符合得较好,这也证明了所提出模型的准确性.并且,该模型适用于电路仿真器.  相似文献   

3.
一种围栅金属氧化物半导体场效应管阈值电压模型   总被引:1,自引:0,他引:1  
针对深亚微米金属氧化物半导体场效应管(MOSFET)多晶硅耗尽效应加剧问题,提出了一种全耗尽圆柱形围栅MOSFET阈值电压解析模型.通过求解多晶硅耗尽层电势泊松方程,得到多晶硅耗尽层上的压降,用以修正沟道区的通用边界条件.然后利用叠加原理求解沟道二维电势泊松方程,建立了圆柱形围栅MOSFET的表面势和阈值电压解析模型,并利用器件数值仿真软件Sen-taurus对解析模型进行了验证.研究结果表明,衬底掺杂原子浓度越高,或多晶硅掺杂原子浓度越低,多晶硅耗尽层上的压降就越大,阈值电压偏移也越显著.与现有模型相比,该解析模型的精确度提高了34%以上.  相似文献   

4.
为了改善MOSFET的短沟道效应和驱动电流,首次提出了非对称Halo掺杂的异质栅SOIMOSFET结构,这种结构在沟道源端一侧注入浓度较高的杂质,再由具有不同功函数的两种材料拼接形成栅极.通过求解二维电势Poisson方程,建立了全耗尽器件表面势和阈值电压的解析模型.研究表明,该结构能有效抑制漏致势垒降低和热载流子效应,且在沟道长度小于100nm条件下,阈值电压表现出明显的反短沟道特征,在Halo和栅材料界面附近的电场峰值使通过沟道的载流子的传输速度显著提高,解析模型与二维数值模拟软件MEDICI所得结果吻合度较高.  相似文献   

5.
研究了弱反型时多晶硅薄膜晶体管表面势的分布。考虑到弱反型时,沟道势对表面势的影响可忽略,利用一维泊松方程,得到相应沿沟道方向任一点的表面势模型。通过将基于此模型的表面势二维分布与二维器件仿真结果进行比较,发现弱反型时,其可逼近二维器件中的表面势分布;并发现分别在相异栅电压,相异漏端电压和相异沟道长度时,弱反型时的表面势与其在沟道中所处的相对位置几乎无关。  相似文献   

6.
基于表面势的多晶硅薄膜晶体管(poly-Si TFT)漏电流模型无法体现晶界的离散分布特性,而基于阈值电压模型的各工作分区电流表达式存在不连续性.为克服此缺点,根据基于表面势模型的建模思想,考虑晶界势垒在沟道中离散分布的特点,提出了多晶硅薄膜晶体管的直流漏电流模型.该模型采用单一的解析方程描述多晶硅TFT各工作区的电流.研究结果表明:TFT工作于线性区且栅压一定时,随着漏压的增大,沟道有效迁移率降低;随着栅压的增大或沟道的缩短,漏电压对沟道有效迁移率的影响减弱.  相似文献   

7.
8.
根据改进后的三角势阱场近似,并考虑量子化效应,提出了一种基于物理的阈值电压和栅电容的解析模型,给出了MOSFETs的阈值电压和栅电容的解析表达式,并与经典理论结果进行了比较。  相似文献   

9.
多晶硅薄膜晶体管特性的研究   总被引:1,自引:0,他引:1  
利用高级二维器件模拟程序MEDICI分析了多晶硅薄膜晶体管有源区的长度、体内陷阱、界面陷阱、栅氧化层厚度等几何参数及物理参数,并研究了这些参数对薄膜晶体管特性的影响  相似文献   

10.
通过制备了一个基于并五笨为有源层的顶栅底接触OTFT器件获取电流电压实验数据,并运用电流电压特性曲线理论拟合计算方法计算其阈值电压.研究发现,采用不同的拟合方法得到的阈值电压值有较大的差异.若选取转移特性曲线线性区距中心1/2范围内测试点进行最小二乘拟合计算出的阈值电压能减少采用其他拟合方法的固有不准确性,而且与其他方法得到阈值电压最接近.  相似文献   

11.
提出一个多晶硅薄膜晶体管的有效迁移率模型.该模型同时考虑了晶体管沟道内晶粒的数目、载流子在晶粒与晶粒间界处不同的输运特性和栅致迁移率降低效应,适应于从小晶粒到大晶粒线性区的多晶硅薄膜晶体管.研究表明:当晶粒尺寸Lg0.4μm时,其有效迁移率主要由晶粒间界控制;降低晶粒间界陷阱态密度可提高有效迁移率;减小栅氧化层厚度可增强栅压对有效迁移率的控制作用;高栅压时出现明显的有效迁移率退化效应.  相似文献   

12.
在超深亚微米MOS器件中,量子效应对器件特性的影响很大.根据改进后的三角势场近似和曲线拟合,同时对MOS器件反型层和多晶硅栅中电子的量子效应进行了建模,得到了一个基于物理的解析模型,利用该模型计算MOS器件的阈值电压,与数值模拟的结果比较表明,模型的精度令人满意.  相似文献   

13.
针对铌酸锂薄膜Mach-Zehnder电光调制器存在半波电压较大的问题,采用有限元法对方向耦合器耦合模理论进行分析,并对电光调制器的关键结构参数进行优化设计。结果表明:两干涉臂光功率差与波导耦合长度呈正弦函数分布,最小波导耦合长度随耦合间距的增大而增大。在调制臂长度为2 cm,光波长为1550 nm时,仿真计算的半波电压值Vπ为0.9 V,半波电压长度积为1.8 V·cm,消光比达到26 dB。通过调制臂截面分析,得到静电场分量Ex,电位移矢量Dx,以及光模分布,并计算出电光重叠积分因子Γ为0.586。基于上述仿真结果,与以往现有的电光调制器的半波电压(1.4~10.2 V)相比,经优化后的电光调制器的半波电压更低,进而使器件的功耗更低,有利于大规模光电集成。  相似文献   

14.
为研究超薄润滑膜的摩擦特性和添加剂的影响 ,采用自制的表面力仪进行了润滑剂基础油和油性添加剂的薄膜流变实验。结果表明 :当膜厚减薄到纳米量级时 ,润滑油呈现非牛顿剪切响应 ,即剪切稀释现象 ,其等效粘度随着膜厚变薄而增加 ,并在某个临界膜厚处急剧上升。加入添加剂后 ,润滑油等效粘度降低 ,临界膜厚变小 ,说明薄膜流变特性与界面的摩擦状况有关。指出油性添加剂的功能在于形成摩擦系数小但厚度较薄的吸附层 ,与界于壁面间的润滑流体构成夹层结构 ,从而较好地解释了实验规律  相似文献   

15.
多晶硅薄膜晶体管特性的研究商陆民,汤金榜(东南大学电子工程系,南京210018)(东南大学无线电工程系,南京210018)周然,杨辉勋(东南大学电子工程系,南京210018)(胜利油田,山东省东营市257061)用于大屏幕显示的液晶的驱动方式,可以分...  相似文献   

16.
本文研究了大面积薄栅M OSFET的阈值电压与栅氧化层厚度的关系。实验结果表明,在薄栅情形(d_(ox)=135~312 )中,阈值电压随着栅氧化层厚度的减少而下降;阈值电压的一维模型仍然适用于大面积薄栅MOSFET。  相似文献   

17.
We prepared a series of lithium lanthanum titanate(LLTO) thin film electrolytes by radio frequency(RF) magnetron sputtering using LLTO targets in a N2 atmosphere.We also deposited the LLTO thin films in an Ar atmosphere under a same condition as references for comparison.The microstructure morphology and the composition of the thin films were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS),respectively.Results show that the thin film has an amorphous structure with a uniform surface and it is free of pinholes and cracks.Impedance measurements reveal that the ionic conductivity of the electrolytes is beneficial for all solid lithium batteries dependent on the lithium content at room temperature.We found that the amorphous LLTO thin film performs well and it has potential application in microbatteries for use in microelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号