共查询到17条相似文献,搜索用时 78 毫秒
1.
非线性奇异边值问题 总被引:1,自引:0,他引:1
刘文斌 《吉林大学学报(理学版)》1996,(1)
利用上下解技巧讨论了奇异方程X"+f(t,x)=0满足非线性边值条件h(x(0),x'(0))=0,x(1)=0的正解的存在性,推广了一些已有的结果. 相似文献
2.
3.
研究了奇异微分边值问题{x″ f(t,x)=0,t∈(0,1) x(0)=x(1)=0 解的存在性。证明了在f(t,x)关于x不增的情况下,其非负解存在的充要条件是存在非钢下解,同时考虑了非线性边值条件下解的存在性。 相似文献
4.
5.
方运生 《安徽工程科技学院学报:自然科学版》2004,19(3):19-24
对一类奇异两点边值问题,在很一般的条件下,证明了摄动问题的可解性与一类全连续映象不动点的存在性是等价的,并且给出了摄动问题的可解性与原问题的可解性之间的关系. 相似文献
6.
为了讨论一类Emden-Fowler方程奇异m-点边值问题正解的存在性问题,运用上下解方法、极大值原理和Schauder不动点定理,在次线性条件下,解决了这类奇异边值问题正解的存在性问题,并获得了该类边值问题存在C1[0,1]正解的充分必要条件. 相似文献
7.
研究了非线性奇异四阶边值问题{u^(4)(t)=λh(t)f(u(t)),0〈1〈1 u(0)=a,u(1)=b,u"(0)=c,u"(1)=d 的正解,应用不动点指数理论和上下解的方法.讨论了当λ〉0时,其正解的存在与x的关系,改进和推广丁文献[1]的结论。 相似文献
8.
9.
本文研究了下面一类拟线性积分微分方程非线性边值问题(Фp(u′))′=f(t,u,T1u,T2u,u′) L(u(0),u(1))=0, R(u(0),u(1),u′(0),u′(1))=0 解的存在性,此类问题来自于研究p-拉普拉斯方程,一般化的反应扩散理论,非牛顿流体理论和多孔介质中的气体湍流等问题.所得结果是利用上下解方法得到.本文的结果是新的且推广了已知结果. 相似文献
10.
沈文国 《兰州大学学报(自然科学版)》2007,43(2):117-120
应用上下解方法和不动点定理,给出奇异非线性二阶三点边值问题x″(t) a(t)f(x(t))=0,0<t<1,x(0)=0,x(1)=kx(η)存在C[0,1]正解的充分条件.这里η∈(0,1)是一个常数,f∈C([0,∞),[0,∞)),a∈((0,1),[0,∞)). 相似文献
11.
利用锥不动点定理得到了一类三阶微分方程的奇异非线性边值问题:
-(p1(x)(p2(x)y′)′)′=f(x,y),
y(0)=y′(0)=y(1)=0正解的存在性, 其中pi(x)∈Ci(0,1)存在有 限多个零点的非负函数. 相似文献
12.
13.
章熙康 《吉林大学学报(理学版)》1992,(1)
本文研究了奇性常微分方程ψ(t)y″=φ(t,y,y′)满足非线性边值条件g(y(0),y′(0))=0,h(y(1),y′(1))=0和周期边值条件y(0)=y(1),y′(0)=y′(1)的解的存在性。 相似文献
14.
苗树梅 《吉林大学学报(理学版)》1993,(1)
本文研究奇摄动积分微分方程的Robin边值问题 εy″=f(t,Ty,y,y′,ε), α(ε)y(0)—b(ε)y′(0)=A(ε),c(ε)y(1)+d(ε)y′(1)=B(ε),其中T是定义在C[0,1]上的一个积分算子。文中用微分不等式方法证明了解的存在性,构造出解的渐近展式并给出了余项的一致有效估计.最后把所得结果用于研究奇摄动四阶边值问题. εx~((4))=f(t,x,x″,x,ε), x(0)=φ(ε),x(1)=φ(ε), α(ε)x″(0)—b(ε)x(0)= A(ε),c(ε)x″(1)+d(ε)x(1)=B(ε). 相似文献
15.
研究了起源于拟塑性流体理论中的一类奇异非线性两点边界值问题正确的存在性和唯一性。 相似文献
16.
赵建清 《长春师范学院学报》2007,(12)
本文研究了四阶拟线性微分方程非线性边值问题(φp(u))′=f(t,u,u″),u(0)=A,u′(0)=B,g(u″(0),u″(1))=0,h(u″(0),u″(1),u(0),u(1))=0,解的存在性。此问题借鉴p-拉普拉斯方程,一般化的反应扩散理论,非牛顿流体理论和多孔介质中的气体湍流等问题的研究成果,利用上下解方法得到此方程非线性边值问题解的存在性。本研究结果是新的且推广了已有研究成果。 相似文献
17.
利用变形边界函数法与上下解方法,研究了一类具非线性边界条件的半线性时滞微分方程边值问题,得到了此边值问题解的存在性的充分条件. 相似文献