共查询到20条相似文献,搜索用时 165 毫秒
1.
特定人孤立词语音识别系统的仿真与分析 总被引:2,自引:1,他引:2
在MATLAB环境下利用语音工具箱Voice Box,设计并实现了基于DTW算法的特定人的孤立词语音识别系统.论述了高效DTW算法的基本原理及系统的实现过程.仿真结果表明,该系统对特定人的孤立词取得了良好的识别率. 相似文献
2.
混响声场中语音识别方法研究 总被引:1,自引:4,他引:1
免提式话筒语音识别系统是语音识别走向实用的目标之一.实现这一系统,首先要解决房间效应引起的混响问题.通过讨论室内混响声场中语音的特点,提出用鲁棒性特征参数——滤波规整的Mel频率倒谱参数(FNMFCC,即MFCC参数在对数功率谱域进行低通滤波,倒谱域进行均值减,并用标准差加权进行非线性规整,采用这3种措施来消除混响引起的语音参数的变化.识别方法用矢量量化法,用4组无混响数码语音进行训练,对特定人无混响和4种混响声场中共150组数码音的平均识别率达到98.7%.提出的这一新方法在不降低无混响音识别率的情况下,提高了混响声场的语音识别率.该方法不仅识别率高,而且运算量小、所需内存空间小。易于做成小型实用的快速识别系统. 相似文献
3.
本文讨论了运用小波变换实现语音增强的原理,提出了相应的去除噪声的方法。实验表明,本文方法能有效地提高噪声背景下语音识别系统的性能。 相似文献
4.
汽车噪声中自动语音的识别技术 总被引:6,自引:0,他引:6
汽车中的话音拨号系统是自动语音识别技术的应用热点.自动语音识别系统是一个基于训练的系统.在汽车噪声中,由于实际应用环境与形成系统参数的训练环境的失配,传统语音识别系统的性能会大幅度地下降,从而无法实用.为了提高语音识别系统在特定环境下的识别率及实用性,首先根据汽车环境中语音的失真模型分析了系统性能下降的原因,然后针对加性汽车噪声与信道失真对系统的影响,讨论了在汽车噪声中改善语音识别系统性能的方法.提出了在识别系统中用基于子带的语音增强算法和倒谱均值相减算法相结合的方法.对大量的多人连续数字串语音的识别实验表明,这一方法大大提高了系统在汽车噪声环境中的识别率,它还可以简便、实时的实现,具有一定的实用性. 相似文献
5.
今天的语音识别正处于由实验室技术走向实用化,产品化的关键时期,然而,现有的绝大我数语音识别系统在噪声环境中的性能都不可避免地急上降,环境噪声已经成为语音识 技术商品化的一个主要障碍,因此在语音识 技术逐渐走向实用化的过程中,噪声语音识别日益成为一个重要的研究领域,遗憾的是,由于噪声语音识 问题本身的复杂性,至今还没有一种方法可以圆满地解决这一问题,拟从模型补偿方面,对噪声环境下的孤立词语音识别进行一些探索,重点研究一个在噪声环境下的语音识别算法--并行模型组合方法(PMC),详细论述了其原理以及在噪声环境下的语音识别中的应用。实验中,我们使用汉语的数字语音,分别在3种不同噪声不同信噪比条件下对这一方法进行了识别率测试,结果显示,该方法有着令人振奋的识别效果。 相似文献
6.
7.
强噪声环境下汉语语音识别的模糊分类算法 总被引:2,自引:0,他引:2
苏广川 《北京理工大学学报》1997,17(6):686-690
论述了强背景噪声环境下利用模糊分类算法对大词汇量的汉语语音进行了分类识别,根据噪声的汉语语音特点,采用有边界的交叉分类和无边界的模糊分类相结合的措施,较成功地解决了强噪声环境下的汉语语音分类。 相似文献
8.
针对谱减法增强语音后残留"音乐噪声"明显,影响语音清晰度的问题,在分析现有的噪声谱减算法基本特性的基础上,提出一种基于噪声短时谱动态估计的语音降噪方法.通过估计噪声短时功率谱及其变化趋势,动态调整谱减法中的过减系数,有效抑制残留噪声.仿真实验表明,新的谱减算法在提高语音信噪比的同时保持较小的失真度,具有较好的增强效果. 相似文献
9.
10.
噪声鲁棒性问题是当前语音识别的一个重点,作者提出了一个在已有数据库下通过人为地将噪声和语音信号混合的方法,实现实际环境下的连续英文数字语音识别系统.即通过自设计的程序将采集到的噪声文本根据不同的信噪比随机地添加到现有的语音数据库的语音文本中,使新的数据库中的语音文本符合实际的语音环境.实验结果表明,本系统对带噪声环境下的英文数字的识别率效果好,单词的总体正确识别率达到95.86%. 相似文献
11.
嵌入式中等词汇量英语语音识别片上系统 总被引:1,自引:0,他引:1
针对目前嵌入式英语语音识别系统中识别性能较差或硬件资源占用较大的问题,提出了一个在16 b定点数据信号处理语音芯片上实现的非特定人、中等词汇量英语命令字识别系统。该系统采用基于连续隐含M arkov模型(con tinuous dens ity h idden M arkov m ode l,CDHMM)的两级识别网络,通过应用改进的音素体系、B ayes ian信息准则模型参数选择算法、决策树和数据驱动相结合的状态聚类方法、最小互信息改变准则特征选择算法,在保证识别率的前提下,大大降低了模型的存贮空间和计算复杂度。实验表明,对1 235词的英语短句的识别率为96.41%,识别时间为0.46倍实时。 相似文献
12.
13.
语音增强用于抗噪声语音识别 总被引:11,自引:1,他引:11
语音识别系统通常是将在安静的环境下训练得到的参数应用于实际环境中。如果实际环境也是安静的 ,则语音识别系统可以令人满意地工作。然而 ,当实际环境中有噪声存在时 ,语音识别系统性能急剧下降。为了让语音识别系统在安静的环境和有噪声的环境中都获得令人满意的工作性能 ,研究了一个将语音增强器和语音识别器级连起来的系统。该系统中 ,语音增强作为前端处理用于提高识别器输入端信号的信噪比。通过 3种不同的增强算法用于纯净语音和3种类型带噪语音的实验结果分析比较表明 ,这一方法对纯净语音的识别精度几乎没有任何改变而大大提高了系统的抗噪声性能 相似文献
14.
在噪声环境下,稀疏表示方法并没有表现出它出色的区分性能,反而由于特征的分散导致性能的大幅下降。根据语音特征参数之间的相关性,提出了一种适用于稀疏表示说话人识别的全局补偿方法。该方法对不同阶特征参数进行逐一分析,目的是为了找出被噪声影响最严重的一阶参数并去除之,以此增强测试语音与训练语音之间的相关性。理论分析和实验结果表明,该方法具有很好的抗噪性能,在信噪比为5d B时,带有白噪声的语句识别率达到了85.7%,而在高信噪比时,其识别率能够达到97.5%,几乎等同于干净语音的识别率。 相似文献
15.
在大词表孤立词语音识别中,Viterbi搜索是时间消耗的主要因素。为改善基线系统性能,根据汉语孤立词识别的特点,提出了一种基于音节切分的束搜索算法,在音节层和词条层进行剪枝。该算法不增加内存开销。实验结果表明:在词表规模为10 000时,该算法以0.23%的识别率下降率为代价,将Viterbi搜索的时间消耗降低为基线系统的26.73%;相对于小词表,该算法在大词表情况下对系统性能的改善尤为明显。 相似文献
16.
为了在大词汇量连续语音识别(LVCSR)系统中能够利用段长信息,该文按树状组织发音词典,利用语言模型预测技术,基于最大似然状态序列(M LSS)算法,给出了采用基于段长分布的隐含M arkov模型(DDBHMM)的LVCSR系统的二元文法语言模型的单步搜索算法。实验结果表明,尽管单步搜索的替代错误率高于双步搜索,但单步搜索的插入和删除错误率都比双步搜索要低,总体性能上单步搜索要好于双步搜索。同时,DDBHMM能较准确地利用了语音信号中的状态段长信息,采用DDBHMM的LVCSR系统比采用经典的齐次HMM的系统有更好的识别性能。 相似文献
17.
为提高噪声不平稳或不可估的情况下语音识别的稳健性,提出了利用自回归模型和短时平稳性假设,估计干净与噪声环境的语音数据,建立相应的语音识别模型,以达到抗噪效果的稳健语音信号处理方法。在N o iseX-92的4种噪声环境(w h ite,babb le,vo lvo,destroyer eng ine)从0到20 dB的不同信噪比下的“863”大词汇连续语音标准数据库的平均识别结果表明,该方法能够使得基于段长分布的隐M arkov模型的语音识别系统在25候选时声学层的音节相对错误率下降达到10.85%以下,同时相对正确识别率上升12.13%。 相似文献
18.
The performance of automatic speech recognizer degrades seriously when there are mismatches between the training and testing conditions. Vector Taylor Series (VTS) approach has been used to compensate mismatches caused by additive noise and convolutive channel distortion in the cepstral domain, in this paper, the conventional VTS is extended by incorporating noise clustering into its EM iteration procedure, improving its compensation effectiveness under non-stationary noisy environments. Recognition experiments under babble and exhibition noisy environments demonstrate that the new algorithm achieves 35% average error rate reduction compared with the conventional VTS. 相似文献
19.
针对语音识别性能提高的问题,提出了一种基于多分类器融合的语音识别方法,该方法使用支持向量机(support vector machine,SVM),RBF神经网络与贝叶斯网络作为成员分类器,根据样本库中抽取的校验集计算各成员分类器的权值,以加权评分的投票策略进行决策融合.实验结果表明,通过多分类器融合的识别结果明显优于... 相似文献