共查询到20条相似文献,搜索用时 10 毫秒
1.
应用Elman神经网络的混沌时间序列预测 总被引:5,自引:0,他引:5
利用改进的 Elman神经网络对 3个典型的混沌时间序列在不同的噪声水平下进行预测 ,探讨了神经网络学习与泛化之间的关系 ,通过试凑法给出了 Elman最优的隐节点个数。并利用3种指标对预测结果进行了评估 ,结果显示 Elman网络对混沌时间序列预测的良好特性 相似文献
2.
Elman神经网络是一种典型的回归神经网络,比BP神经网络具有更强的计算和适应时变特性的能力,因而非常适用于预测股市这一类极其复杂的非线性动力学系统。文章给出一种基于Elman神经网络的股票市场建模、预测及决策方法,对浦发银行股价在时间序列上作了连续若干天的短期预测,实验结果取得较高的预测精度、较为稳定的预测效果和较快的收敛速度。这表明该预测模型对于个股价格的短期预测是可行和有效的。 相似文献
3.
为了改进神经网络的预测性能,更精确地预测人民币汇率,提出一种新的汇率时间序列预测方法,即利用基于经验模态分解(EMD)的Elman网络进行预测.首先对人民币兑美元的汇率序列做了非线性检验和非平稳性检验,然后对该序列进行经验模态分解,将得到的固有模态函数作为神经网络的输入变量,并在确定神经网络的关键参数后进行预测.实证结果表明,利用基于EMD的Elman网络进行人民币汇率预测能够取得更好的效果. 相似文献
4.
基于RBF神经网络的时间序列预测 总被引:3,自引:0,他引:3
分析了RBF神经网络的结构和学习算法,利用RBF神经网络和Matlab神经网络工具箱建立人口数量预测模型,并应用该模型对中国人口数量进行了预测. 相似文献
5.
车生兵 《湖南文理学院学报(自然科学版)》2003,15(4):60-63
根据神经网络(NN)的特点,利用Logistic混沌映射和特定的适应度函数,在限制近亲数量在种群库中所占比例的前提下,及时吸收新的随机个体,提出了基于混沌和遗传算法的神经网络训练算法.根据该算法写出了MATLAB程序文件main.m,给出了应用实例,还研究了混沌参数与训练误差的关系,提出了混沌参数的调整步骤及应用。 相似文献
6.
电力系统短期负荷预测在电力系统的调度和管理中起着重要的作用,已有研究证明了电力短期负荷是一非线性动力系统,负荷时间序列是混沌时间序列.文章讨论混沌时间序列的相空间重构技术,并以实际电网为例重构了该电力系统的相空间,最后采用Elman递归神经网络对负荷时间序列进行仿真预测,预测结果表明采用该方法能取得较好的预测效果. 相似文献
7.
基于Elman神经网络的污染源数据预测 总被引:1,自引:0,他引:1
为了给环境保护决策提供有价值的预测数据,提出利用Elman神经网络建立污染源数据预测模型的方法,以大气中的主要污染物SO2为例,用预测模型表征SO2的浓度和气温、相对湿度、风速、时间等影响因子及其历史数据之间的复杂关系.使用训练后的模型对数据进行模拟仿真,结果表明所建立模型的计算输出值与实际样本数据有着较好的一致性,模型预测效果优于基于BP神经网络的预测模型. 相似文献
8.
9.
10.
交通流诱导系统是智能交通系统领域中一项重要的研究内容,而交通流量的预测问题则是交通流诱导系统的核心问题.因此,能够实时准确地预测交通流量成为诱导系统是否能够有效实现的关健问题.根据交通流的特性,分析交通数据采集过程中错误数据产生的原因,提出相应的处理方法,并在此基础上采用Elman神经网络对智能交通系统的流量预测进行建模.该系统采用C#并结合Matlab进行开发,通过Elman神经网络算法实现流量的预测,并采用图表的方式直观地显示预测结果.应用结果表明:该方法可以有效地对交通流量进行预测,且预测精度可以满足实际交通诱导的需要. 相似文献
11.
BP网是神经网络时间序列预测方法中最常用的网络。针对BP算法局部搜索能力强,而遗传算法全局搜索优势突出的特点,将二者结合构造遗传BP神经网络,用于非平稳时间序列预测。仿真结果表明,该混合算法不仅提高了学习效率,而且对太阳黑子数预测的准确性高于BP算法、传统统计学预测方法。 相似文献
12.
本文对香港恒生指数期货(HSI)的时间序列进行了分析和预测。我们发现该时间序列具有分数组和正的Lyapunov指数,这表明该序列是由内在的混沌确定力产生的。在对该序列进行动力学重构和可测性分析的基础上,我们用混沌算法的前馈神经网络对它进行了在线预测。计算机模拟表明混沌算法神经网络的预测噗蒿于背传算法神经网络的预测精度。 相似文献
13.
传统的警情时间序列预测以实际的发案数量为目标,且仅能实现短期的预测,但由于警情时间序列本身固有的强随机性使预测很难达到理想的效果。根据警情时间序列数据的特点,从公安工作的实际需求出发,提出了一种基于时间序列分解与全连接神经网络的(STL-FNN)预测模型,该模型以预测警情的单日发案的风险等级为主要目标,能够实现警情风险等级的长周期预测。利用该模型对B市侵财类警情数据进行了时间序列长周期预测的实证分析,结果表明:STL-FNN模型能够实现一年的警情单日发案风险的预测,平均准确率为0.624 7,预测性能优于Holt-Winters、LSTM、Prophet和ARIMA等模型。 相似文献
14.
基于遗传算法的RBF神经网络非线性时间序列预测 总被引:1,自引:0,他引:1
提出一种基于遗传算法和RBF神经网络相结合的时间序列预测模型,克服了单个神经网络在非线性时间序列预测中容易陷入局部极小值及网络训练速度缓慢的问题.以居民消费价格指数数据进行训练和测试,与传统的BP神经网络预测模型相比较,该模型的预测精度是令人满意的,数值模拟证明了该方法的有效性和可行性. 相似文献
15.
金融时间序列预测中的神经网络方法 总被引:6,自引:0,他引:6
概述了神经网络方法在金融时间序列预测应用中所面临的有关问题,给出了解决方法;针对有关模型和算法作了计算模拟与分析,得到了一些可供今后研究参考的经验结果;讨论了金融时间序列预测中主要的神经网络模型,如多层前馈网络、径向基函数网络以及支持向量机网络等.总结了关于模型改进的一些近期研究进展与结果,指出了神经网络用于金融时间序列预测的一些可能的方向. 相似文献
16.
传统PMV指标计算方法具有复杂度高、延时大的缺陷.根据PMV参数的时变特征,利用Elman神经网络建立PMV参数预测模型,实现对热舒适度的在线监测.模型以温度、相对湿度、风速和平均辐射温度为输入,以PMV指标为预测输出,具有良好的泛化能力.仿真结果表明该方法的预测结果与数值计算的结果相近,同时训练后神经网络的计算时间优于传统方法的计算时间. 相似文献
17.
18.
基于混合算法优化神经网络的混沌时间序列预测 总被引:1,自引:0,他引:1
提出了一种混合算法优化神经网络的混沌时间序列预测模型.将粒子群优化算法与模拟退火算法过程中概率突跳的思想相结合形成一种新的混合算法,并用此混合算法优化神经网络建立预测模型.该模型克服了传统的神经网络收敛慢、易陷入局部最优等不足.利用该模型对Mackey-Glass混沌时间序列和Henon映射进行实验仿真,结果表明,该模型收敛速度快,稳定性能好,预测精度高. 相似文献
19.
文章将动态回归神经网络(Elman)预测方法应用于城市公交客流量的预测, 通过对合肥市公交量的历史数据分析得到公交客流量的时间序列,将时间序列视为一个从输入到输出的非线性映射,对网络进行学习与训练仿真实验,并与BP神经网络输出结果进行了比较,并对网络模拟结果和历史数据进行了线性回归分析,求得一定的相关系数.结果表明,应用Elman神经网络方法比BP神经网络对公交客流量进行短期预测,预测精度高及效果好. 相似文献