共查询到17条相似文献,搜索用时 62 毫秒
1.
基于改进的BP网络数字字符识别 总被引:1,自引:0,他引:1
提出了一种基于改进的BP网络方法来实现数字字符识别.通过对BP网络的神经元的研究与学习,设计了一种结构合理,收敛速率快的BP网络.试验测试结果表明,改进的BP网络方法对印刷体数字的识别率达到了100%,对手写数字的识别率达到了98%以上. 相似文献
2.
英文字符识别已经广泛地应用于很多重要领域.已有的英文字符识别算法很多,一种典型的算法是BP神经网络算法.但是,BP神经网络算法有时不收敛,或陷入震荡.这就导致识别率下降.为此,本文研究了一种改进的称为动量BP神经网络算法用于英文字符识别.这种算法在BP神经网络算法的网络参数控制中添加一个动量系数和一个动量项.这样可以避免迭代的震荡,加快收敛速度.提高识别率.利用动量BP神经网络算法,对52个英文大小写字符进行了识别试验.实验结果表明,这种算法能获得满意的识别率. 相似文献
3.
BP网络在汽车牌照字符识别中的应用 总被引:3,自引:0,他引:3
基于BP神经网络原理对汽车牌照中数字与英字母进行了识别.分析了汽车牌照图像的识别处理过程,提出一种将大量模式分成许多小模式组的方法,研究了学习速率、误差精度与隐含层节点数之间的关系.实验结果表明所设计的汽车牌照神经网络识别系统能够较好地识别汽车牌照字符. 相似文献
4.
根据字符的不同统计特征设计了不同的特征提取方法和分类器。实验表明,本文提出的字符识别方法,对车牌字符识别具有一定的识别率。 相似文献
5.
提出了一种基于小波变换预处理的神经网络法的字符识别法,利用小波变换对字符进行了预处理,提取文字字符的主要能量特征,减少了字符特征识别的维数,与直接采用神经网络方法进行字符识别相比,所用的神经网络规模小,收敛速度快,能有效识别含有噪声的低质量模糊文字字符. 相似文献
6.
7.
李涛 《达县师范高等专科学校学报》2004,14(2):49-51
BP网络模型是最早被提出来的人工神经网络模型之一,它是一种简单而且非常有效的算法.在数字字符识别系统中,为了克服BP神经网络的易陷入局部极小、收敛速度慢等缺点,本文对传统的BP算法进行了多方面的改进,使得算法更加有效. 相似文献
8.
9.
10.
刘永春 《四川理工学院学报(自然科学版)》2012,25(4):46-49
SVM可在训练样本很少的情况下获得很好的分类推广能力。首先分析了用多类SVM算法对车牌中的字符进行识别时存在不可区分的区域问题和采用模糊SVM算法解决该问题的办法,然后讨论了字符特征的提取方法,并根据我国车牌字符的特点分别设计了汉字、字母、数字、字母/数字4个基于模糊多类SVM的字符分类器。最后在MATLAB环境下,采用径向基核函数对算法进行学习训练。实验测试结果表明,该方法可以很好的提高字符识别的速率和效率。 相似文献
11.
基于BP神经网络的手写字符识别 总被引:1,自引:0,他引:1
提出一种基于BP神经网络的手写字符的识别方法,首先建立样品库,对样品库中的样品提取特征,作为输入层的输入值,采用改进BP算法进行网络训练,不断修改权值和阈值,然后对任一输入的手写字符,运用BP神经网络进行识别,实验证明将改进的BP算法用于手写字符识别有较好的识别效果,提高了算法的收敛速度。 相似文献
12.
李靖平 《佛山科学技术学院学报(自然科学版)》2014,(3):73-79
提出了利用BP神经网络方法来实现手写数字识别系统的方案。手写数字图像通过颅处理后,在特征提取方面采用两种适应性较强的特征提取方法,即18点特征提取方法和手写数字笔画特征提取法.不但减少了提取时间。而且提高了手写数字图像的识别率。利用Visual C++编写手写数字识别系统,得到了较好的识别结果。 相似文献
13.
14.
基于BP神经网络指纹识别的算法 总被引:2,自引:0,他引:2
通过对多种指纹分类算法的研究和分析,提出了一种基于BP神经网络对指纹模板进行分类的新算法.首先在对指纹图象进行预处理后建立起指纹模板库,然后采用时间模拟退火函数进行学习因子修正的方法来减少BP算法迭代次数,以提高收敛速度及跳出局部最小.仿真证明:该算法与传统的指纹识别算法相比,分类速度明显高于传统的固定步长的BP算法. 相似文献
15.
提出了一种车牌汉字识别方法.该方法基于统计特征中的投影特征将车牌汉字根据结构特征进行粗分类,对于粗分类结果建立不同的BP神经网络分类器,训练完毕后,以MATLAB为软件平台,利用网络参数对车牌汉字进行分类识别.结果表明,该方法对车牌汉字识别有效,识别率高. 相似文献
16.
基于ICA和BP神经网络的人耳图像识别 总被引:1,自引:0,他引:1
提出了一种独立分量分析和BP神经网络相结合的人耳识别新方法(ICABP法).首先采用快速独立分量分析方法提取人耳图像的独立基图像和投影向量,然后采用改进的三层BP神经网络进行分类识别.该方法将ICA的空间局部特征提取功能和BP神经网络的自适应功能有机地结合起来,增强了系统的鲁棒性.实验表明,ICABP法取得了很高的识别率. 相似文献
17.
当前非定特人语音识别算法大多只适于连续语音,且识别精度和速度均较低。为此,提出一种新的基于BP神经网络的非特定人语音识别算法,介绍了标准BP神经网络,针对其收敛速度慢的弊端,通过变化的自适应学习速率,令网络训练针对各种阶段自行设置学习速率值,利用变学习速率构建对应的改进BP神经网络模型,将改进的BP神经网络模型看作识别非特定语音的识别器,输入待识别语音,令累计预测残差达到最小,实现非特定人语音识别。将改进模型应用于非特定人语音识别中进行验证,结果表明所提算法识别率更高、识别速度更快,不仅适于连续语音的识别,也适于不连续语音的识别。 相似文献