首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
为了理解紫色光合细菌LH1和LH2的可能的光谱性质,解析地研究了二聚物环状链的激子能级结构.在叶绿素分子间偶极子-偶极子相互作用的近似下,利用偶极子间的相互作用能量和指向参数,解析地给出了激子能级、带宽和两个Davydov子能带间的带宽.提出的模型包括了系统中色素分子间所有的相互作用.  相似文献   

2.
利用包括了系统中色素分子间所有的相互作用的环形链模型,计算了紫色光合细菌LH1和LH2的激子态的振子强度和圆二色性(CD).LH1和LH2复合体的吸收和圆二色性光谱的数值模拟结果与实验测量结果的主要特征相符.  相似文献   

3.
利用包括了系统中色素分子间所有的相互作用的环形链模型,计算了紫色光合细菌LH1和LH2的激子态的振子强度和圆二色性(CD).LH1和LH2复合体的吸收和圆二色性光谱的数值模拟结果与实验测量结果的主要特征相符.  相似文献   

4.
采用飞秒泵浦-探测技术研究了紫细菌外周捕光天线LH2中的超快光物理过程,在天然LH2中,B800到B850分子之间的能量传递时间在0.65ps左右;在B800主吸收带的兰侧激发时,观察到一个约400fs的超快弛豫过程,可归属于B800分子之间的能量分布过程;在848nm激发时观察到150fs的超快相归属于位于B850的激发能向其近邻分子的离域过程,几个皮秒的快相归属于激发能在次最低激子态和最低激子态间的分布过程.  相似文献   

5.
从紧束缚模型出发,研究了聚合物分子中链间耦合对激子形成的影响.结果表明:光激发后耦合分子体系中形成的激子态有两种可能的分布:一种是激子在强耦合下仍主要局域在一条链中(称为链间定域激子);另一种是激子在链间平均扩展(称为链间扩展激子).通过计算链间耦合强度对这2种激子态的产生能和束缚能的影响,发现耦合体系中激发的电子-空穴更容易复合形成链间定域激子.另外,通过分析链间耦合强度对激子束缚能的影响,表明聚合物分子之间的耦合不利于激子形成,因此固态薄膜的光致发光效率要低于其溶液状态.  相似文献   

6.
考虑设计偶极间接激子的2维静电俘获.可以看到,与由于陷阱几何增加的平面电场结合的激子偶极-偶极相互作用约束所俘获的最大密度和寿命.导出这些值的解析估算,并确定它们与陷阱几何的关系,提出观察激子的Bose-Einstein凝聚方法中的高密度陷俘的最佳设计.  相似文献   

7.
运用连续极限近似方法,通过求解声子和激子的运动方程,得到了在不考虑激子与声子的相互作用和考虑激子与声子相互作用两种情况下的极性分子简谐链和非简谐链中晶格振动的孤子解,并得出了激子与声子的相互作用的非线性效应类似于晶格三次势的非线性效应,以及相同的非线性效应不论是同时作用还是单独作用都具有相同的非线性效应的结论。  相似文献   

8.
利用单重态激子的裂变机制,被认为是提高有机光伏器件量子效率的一种可行途径.然而,在非晶态薄膜中有机分子的取向是杂乱的,能否在排列杂乱的分子之间发生有效的激子裂变过程,是制约这一方法的重要问题.本实验中,在室温下测量了红荧烯掺杂有机薄膜光致发光的磁场效应与光致发光的瞬态衰减,由此计算出了薄膜中红荧烯分子间激子裂变速率的磁场效应.基于Merrifield的唯象理论,研究了薄膜中分子排列有序与排列无序两种情况下激子裂变速率磁场效应的差异.将实验数据与理论曲线相对比,显示出掺杂薄膜中的激子裂变过程主要发生在排列无序的红荧烯分子间.这从实验上证明了在非晶态有机固体中可以发生有效的激子裂变过程.而激子裂变过程的速率主要与材料中的载流子迁移率有关.  相似文献   

9.
概述了近年采光合细菌捕光色素蛋白复合体LH2的结构研究状况,并在此基础上阐述了各组分的功能、特点及相互作用.  相似文献   

10.
原子级厚度的过渡金属硫化物二维材料具有独特的电子和光学性质,当将其构筑成原子层异质结时,由于层间耦合作用和界面电荷传递,导致产生新的光学性质,在光电器件方面具有重要的潜在应用.利用机械剥离法制备了WS_2/WSe_2异质结,通过变温拉曼光谱和变温光致发光光谱,研究了异质结中的层间相互作用和界面电荷传递.从拉曼光谱和光致发光光谱上观测到了层间声子和层间激子的存在,表明WS_2和WSe_2构成的异质结中存在明显的层间相互作用.由于WS_2和WSe_2形成Ⅱ型能带排列,电子从WSe_2向WS_2转移,显著影响带电激子和中性激子发光强度.  相似文献   

11.
<正>碱金属原子作为催化反应助剂,广泛应用于CO、N2和NO等分子的解离和氧化反应中,其对CO等分子吸附能、解析过程和催化反应速率等有显著的影响.长期以来人们一直认为碱金属原子与CO分子间主要是局域短程相互作用.最近,结合吸附物碱金属原子与CO分子间距d大小给出:(1)当d≈3 nm,碱金属原子与CO分子间属于轨道直接杂化短程相互作用;(2)当d≈4 nm,二者间属于短程静电相互作用;(3)以  相似文献   

12.
提出了一种通用的严格求解任意微纳结构中2个二能级“原子”间量子偶极-偶极相互作用的方法.量子偶极-偶极相互作用传输率用2个经典电偶极子同时存在时的辐射功率减去它们单独存在时的辐射功率来表达,辐射功率通过经典的时域有限差分方法获得.将该方法应用到偶极子处于真空和平板金属腔中的情况,其数值结果与解析结果符合得很好,验证了该方法的可行性.  相似文献   

13.
采用线性组合算符方法研究了半导体量子点中弱耦合激子的性质.讨论了声子之间相互作用对激子基态能量的影响.数值结果表明:声子之间相互作用对激子基态能量的影响不能忽略.  相似文献   

14.
考虑了无限高势垒量子阱,计算得出了零维、一维、二维和三维量子阱中激子-声学声子耦合导致的激子基态能量移动.结果表明,激子的声学极化子效应随材料带宽的增大而增大.  相似文献   

15.
电荷转移模型是解释分子间单重态激子裂变过程的一个重要理论机制,然而对此模型的合理性仍然存在争论,对模型中涉及的电子转移过程也缺乏研究.本实验以具有激子裂变特性的红荧烯分子为研究对象,通过双源共蒸发的方法制备了4个系列红荧烯掺杂的混合薄膜,并在室温下分别测量了混合薄膜的光致发光谱及其瞬态衰减曲线.理论上,基于"S_1+S_0?1~(TT)_i?T_1+T_1"三状态反应模型,采用耦合的速率方程组对所有的发光衰减曲线进行了拟合,得到了激子裂变过程中所涉及的重要速率常数.根据每种材料的摩尔质量与摩尔体积,计算了混合薄膜中红荧烯分子的平均间距.实验发现:红荧烯分子间的电子转移过程具有量子隧穿的特点,激子裂变过程的速率随分子间距的增大呈现出明显的指数下降规律.上述结果符合电荷转移模型的特征,可作为支持电荷转移模型的实验证据,这对于澄清激子裂变的微观图像具有重要价值.  相似文献   

16.
半导体的物理性质很大程度受到激子-声子耦合的影响,共振拉曼光谱是一种研究激子-声子耦合的有力手段。文中首先介绍固体中的元激发(电子、声子、激子)以及电子(激子)-声子相互作用。随后介绍激子-声子相互作用对拉曼选择定则的影响,二维层状材料的层间振动模式,以及与电子-声子耦合相关的黄昆因子的理论。最后,介绍了基于激子-声子耦合的声子辅助荧光上转换光制冷和光学声子的可分辨边带拉曼制冷的基本理论。  相似文献   

17.
利用室温磷光研究了钯卟啉 (Pd- TAPP)与 ct DNA及 SDS的相互作用特征。 SDS通过静电缔合及尾链保护增强 Pd- TAPP磷光强度 ;Pd- TAPP通过静电和疏水相互作用结合于 DNA的沟槽区 ,缔合常数为 4.37× 10 5L· m ol- 1 (bp)。平均一个钯卟啉分子与 4~ 5个核酸碱基对相互作用时 ,核酸表面的钯卟啉分子达到饱和 ;然后卟啉分子开始聚集组装 ,激子相互作用导致激发光谱分裂 ,聚集缔合常数为 0 .5× 10 5L· mol- 1 。  相似文献   

18.
以非富勒烯为受体的有机太阳能电池中,给体和受体分子可同时吸收可见光并各自产生光诱导的激子,这些激子的解离是决定太阳能电池效率的关键因素之一.因此,选取HXSC12分子为电子给体,6种具有不同侧基的1,8-萘酰亚胺小分子作为电子受体,利用Marcus公式和电子结构计算研究了给体和受体分子上激子在其构成界面上的解离过程,着重分析了受体分子侧基对两种激子的解离速率的影响.结果发现,给体和受体分子的吸收光频率互补,且对于效率较高的体系组合中两种分子上的激子解离速率基本具有相同量级,表明给体和受体在收集太阳能方面具有同等重要的作用.在受体中引入吸电子侧基后,可使得受体吸光强度增加,同时增加了给体-受体界面上激子解离的耦合强度和驱动力从而明显提高激子解离速率;而引入给电子侧基后,受体吸光强度明显降低,也降低了激子解离的耦合强度,导致激子解离速率降低.该计算结果与实验观测一致,可为制备高效的有机太阳能电池提供新思路.  相似文献   

19.
基于紧束缚SSH模型,本文讨论了激子的两种光跃迁,进一步提出了聚合物分子中光致载流子的有效途径-激子解离.我们发现:激子的高能跃迁使激子直接解离为自由的荷电载流子,从而参与聚合物分子中的光电流;低能跃迁形成的激子激发态的解离是强电场相关的,只有在强场下低能跃迁使激子解离为自由的荷电载流子.  相似文献   

20.
本文采用顾世洧研究体内激子的方法讨论多原子极性晶体中的激子。采用微扰法,导出了激子的有效哈密顿量,其中包括不同支 LO 模与电子耦合的贡献,而且还存在不同支 LO 模间相互作用所贡献的附加项。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号