首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用数值解析法分析了环形孔节流器设计参数对空气静压轴承承载力和刚度的影响.仿真结果表明:气膜承载力随承载面直径、节流孔直径和进气压力的增大而增大;气膜刚度随承载面直径和进气压力的增大而增大,随节流孔直径的增大而减小;气膜刚度随气膜厚度增加时呈现出先增大后减小变化规律,在中间某一气膜厚度出现最大值.数值分析结果将为空气静压轴承节流器数量、排列组合方式、单个节流器设计参数合理选取提供理论参数.  相似文献   

2.
深浅腔动静压轴承油膜特性   总被引:1,自引:0,他引:1  
以用于某高精度数控车床主轴部件的深浅腔液体动静压轴承为研究对象,在对其进行理论建模与分析的基础上,采用计算流体力学软件对深浅腔动静压轴承油膜特性进行分析.分析不同的转速、供油压力、偏心率、油膜厚度和深腔夹角等因素对油膜承载力、进油孔流量和油膜温升的影响.结果表明:进油孔流量随主轴转速的增加先增大后减小,随主轴偏心率的增加逐渐减小;油膜温度随外部供油压力的增加逐渐减小且趋于平缓;油膜厚度在0.03mm左右时承载力和温升最合适;在深腔夹角为10°时,油膜的动压效果最明显,油膜承载能力最强.  相似文献   

3.
基于计算流体动力学(CFD)理论,建立不同的水膜润滑模型并进行仿真计算,分析最小水膜厚度、瓦块倾斜角度、瓦斜面升高比及转速对某斜面推力轴承的承载能力的影响规律,为水润滑斜面推力轴承的设计提供理论依据.结果表明:最小水膜厚度和转速是影响轴承承载能力的重要因素;当最小水膜厚度和转速一定时,存在最优的瓦块倾斜角度或瓦斜面升高比使轴承承载能力最大,最优瓦斜面升高比为0.656,最优瓦块倾斜角度可以通过最小水膜厚度与最优瓦斜面升高比计算得到.  相似文献   

4.
针对水润滑橡胶轴承在混合流态下的润滑问题,基于层流、湍流经典润滑理论建立了水润滑橡胶轴承混合流态下的润滑方程,采用有限差分法分析了混合流润滑下的雷诺数、水膜厚度、衬层变形及水膜压力随偏心率、转速和长径比的变化规律,并将层流、湍流和混合流3种润滑流态下计算得到的润滑特性进行了对比分析。结果表明:混合流润滑方程比层流和湍流润滑方程更适合水润滑橡胶轴承的实际运行工况,混合流润滑下的水膜厚度、衬层变形和水膜压力的取值范围均处在层流润滑和湍流润滑之间;在混合流润滑下,雷诺数在承压区随偏心率的增大而减小,同时随转速的增加而增大;水膜厚度随偏心率的增大而减小,随转速和长径比的增大而增大;偏心率对最大衬层变形的影响最大,转速的影响次之,长径比的影响最小;水膜压力在承压区随着偏心率、转速和长径比的增加均增大。此研究可为准确分析水润滑橡胶轴承实际运行工况下的润滑特性提供参考,也可为计算流体动力学(CFD)仿真水润滑轴承润滑机理的研究提供依据。  相似文献   

5.
对用于微小型涡轮发动机的圆锥气体静压轴承的特性开展了理论及实验研究.设计了圆锥气体静压轴承的结构型式,提出了圆锥气体静压轴承的润滑模型及其数值解法,获得了圆锥气体轴承承载力和气体质量流量性能,考察了气膜厚度、供气压力和节流孔数目对轴承性能的影响.建立了圆锥气体轴承测试平台,获得了轴承的质量流量-供气压力曲线,为理论模型的验证提供了实验手段.结果表明,增加供气压力和节流孔数目可提高承载力和气体质量流量;圆锥轴承测试结果与理论结果趋势一致,数据吻合.   相似文献   

6.
用弹性薄板实现的可变均压槽与固定均压槽结合应用的新型空气静压推力轴承具有高刚度的优点,本文运用空气静压推力轴承性能测试试验台测试空气推力轴承的气膜间隙,气膜压力分布,承载能力。对新型气体静压推力轴承的承载能力进行了实验研究和分析,结论证明该新型气体静压推力轴承的计方案能够提高轴承的承载能力。  相似文献   

7.
表面粗糙度对低速水润滑滑动轴承混合润滑性能的影响   总被引:1,自引:0,他引:1  
针对船用滑动轴承在低速水润滑工况下液膜承载能力不足导致的局部固体接触碰磨问题,研究了表面粗糙度对水润滑滑动轴承混合润滑性能的影响。假设轴颈和轴承表面粗糙峰服从高斯分布,以粗糙峰高度综合标准差表征表面粗糙度,联立平均雷诺流体润滑方程和GreenwoodTripp(GT)固体表面接触方程,对比分析了全膜润滑和混合润滑下的液膜厚度和压力分布,针对几种典型转速研究了表面粗糙度对轴承的液膜承载力及其最大压力、粗糙峰接触承载力及其最大压力、偏心率和最小名义膜厚的影响。数值计算结果表明:在低速水润滑工况下,混合润滑模型的最大液膜压力比全膜润滑模型降低一个数量级以上,粗糙峰接触压力的产生使得最小名义膜厚增加;随着表面粗糙度的增加,液膜承载力、偏心率、最大液膜压力和最大粗糙峰接触压力呈减小趋势,粗糙峰接触承载力和最小名义膜厚呈增加趋势;在混合润滑下转速对最小名义膜厚和偏心率的变化曲线没有影响。该研究可对低速水润滑滑动轴承优化及可靠性设计提供一定的参考。  相似文献   

8.
在高速重载工况下静压推力轴承由于强剪切和强挤压联合作用,油膜发热量大,温升高且分布不均,会产生热变形。不同工况下静压推力轴承对流换热不同,进一步导致工作台和底座热变形不均匀。为表征其热特性,提出等面积分割法,通过区域计算不同工况下静压推力轴承对流换热系数。运用软件ANSYS Workbench对工作台和底座温度分布及热变形进行仿真,得到工作台热变形分布及载荷和转速对轴承的影响,搭建实验台并进行验证。结果表明:承载0~8 t时,随载荷增大和转速减小,变形量逐渐增大。承载8~24 t时,随载荷增大和转速减小,变形量逐渐减小。承载24~32 t时,旋转工作台为Z向负变形,且最大变形在工作台边缘处,底座最大变形集中在底座最下面肋板部分。底座变形比旋转工作台变形小。承载16~30 t时静压推力轴承变形较小,最优承载在16~30 t之间。建议通过优化其内部结构或增强散热进一步提高抗热变形性能。  相似文献   

9.
动静压轴承中油腔结构对轴承的承载能力有着一定的影响。本文在结构建模的基础上,基于FLUENT对液体动静压轴承压力场的分布进行了数值计算,分析了承载能力与油腔深度的关系。研究结果显示:浅油腔结构动静压轴承的承载能力比深油腔的承载力提高了17%,表明浅腔结构具有更好的承载性能。  相似文献   

10.
为了研究多孔质石墨静压气体推力轴承的静态特性,建立了相对应的理论计算模型.基于该模型分析了多孔质石墨密度、表面限制层、供气压力以及气体质量流量等因素对多孔质石墨静压气体推力轴承静态特性的影响.理论计算结果表明,轴承承载力与石墨密度成负相关、与供气压力成正相关,并在有表面限制层时较大;气体质量流量与石墨密度成负相关、与供气压力成正相关,并在有表面限制层时较大;轴承的刚度与石墨密度、供气压力成正相关,并在有表面限制层时较大.进一步设计实验台,绘制出多孔质石墨静压气体推力轴承的气膜厚度与承载力的静态特性曲线图.对比发现,实验结果与理论结果吻合较好,从而验证了数值计算方法的可靠性.  相似文献   

11.
高速动静压轴承支承主轴系统动特性测试研究   总被引:1,自引:0,他引:1  
以自行设计的高速主轴水润滑动静压轴承为基础,采用不平衡质量法识别出转子系统支撑轴承的动特性系数,通过轴承性能测试实验得到了供水压力、主轴转速等运行参数对轴承-转子系统动特性的影响.结果表明:轴承-转子系统动特性系数随系统供水压力和主轴工作转速的增加而增大;在供水压力较低时,工作转速对轴承动特性影响较小;当供水压力升高到一定程度时,工作转速对轴承的动特性产生较大影响,此项研究对轴承-转子系统结构参数的改进以及不同工况下最佳运行参数的确定具有一定的指导意义.  相似文献   

12.
毛细管节流的油膜轴承结构参数设计分析   总被引:1,自引:0,他引:1  
油膜轴承的结构参数对其承载能力和油膜刚性起决定性的作用,轴承结构参数主要包括腔型结构、油腔数目、节流器参数等.对上述参数进行了分析.对腔式及垫式静压轴承、偏心油楔及阶梯腔的动静压轴承进行了静态设计计算,运用数值计算方法结合MATLAB软件编程求解了轴承结构参数与油膜承载能力间的相互关系.结果表明:阶梯腔结构相比于其他几种结构形式的动静压轴承具有更为理想的承载能力.  相似文献   

13.
为了减少热变形,提高高速精密磨床砂轮主轴系统的精度,将隔热涂层应用于深浅油腔动静压轴承.应用FLUENT和ANSYS两个有限元软件联合仿真分析了不同厚度与不同热导率的隔热涂层在不同的动静压轴承供油压力、主轴转速等因素下的轴承热-结构特性.结果表明:动静压轴承的温度和热变形以及它们的均布程度,都随着隔热涂层厚度的增大逐渐降低,随着隔热涂层热导率的减小而减小,随着轴承供油压力的增加而减小,随着轴承主轴转速的减小而减小;隔热涂层还具有均化轴承温度场和热变形分布的作用.高性能隔热涂层将明显降低轴承主轴热变形并且使其热变形均布,最终明显提高高速精密磨床砂轮主轴系统的加工精度.  相似文献   

14.
可倾瓦推力轴承启动过程瞬态热效应的实验研究   总被引:1,自引:0,他引:1  
实验研究了可倾瓦推力轴承在 2 30 0~ 51 0 0r/min的名义转速范围内时 ,空载快速启动及慢速启动过程中推力轴承油膜温度和油膜厚度的瞬态变化规律 .实验表明 ,在启动过程中 ,油膜温度随转速的提高而升高 ,不同的升速时间对油膜温度的影响也不同 ,油膜的厚度也随转速的提高而升高 .  相似文献   

15.
基于分子气体膜润滑模型探讨微气体螺旋槽推力轴承中的稀薄效应,将广义雷诺方程与运动学方程在时域内耦合并采用直接数值模拟方法联立求解,获得了任意时刻微转子的瞬态位移和速度响应,考察了气体稀薄效应以及不同螺旋槽结构参数对微气体螺旋槽推力轴承-转子系统非线性动力学行为的影响,并得到不同转速对应的轴向扰动临界值.结果表明:考虑稀薄效应时微轴承-转子系统显示出更好的稳定性;转速增加,轴向扰动临界值降低;能提高微轴承承载力的最佳螺旋槽结构参数,并不利于提高微系统的稳定性.  相似文献   

16.
针对实际工况下圆柱滚子轴承接触区润滑油膜薄而窄难以测量的问题,利用基于等效弹簧模型的超声测量原理进行研究,设计并搭建了专用圆柱滚子弹流润滑油膜厚度测量实验台,对超声测量圆柱滚子轴承润滑油膜厚度进行实验研究。通过该实验台来模拟圆柱滚子在实际工况下的运行状态,高频测量探头安装在5自由度微动平台上以便调整合适的测量位置;在轴承保持架上贴一个反光片作为每个工况下开始测量的触发信号,保证每次测量同一个滚子;使用温度传感器实时测量实验轴承温度,考虑温度对润滑油的影响。实验所能测量的最大转速取决于重复频率,重复频率不足会导致较大的测量误差;超声探头聚焦直径区域内的平均效应导致无法测量比聚焦区域更小的油膜分布信息。在最高转速600r/min、最大载荷16kN的范围内成功测量到了圆柱滚子轴承在实际工况下0.2~1.2μm的膜厚。实验结果表明:最小膜厚会随转速的升高而增大,随载荷的增大而减小,与理论计算结果拟合程度较高,证明了该方法在实际工况下测量圆柱滚子轴承油膜厚度的有效性和准确性。  相似文献   

17.
应用SolidWorks软件分别建立4种不同节流孔径静压干气密封三维几何模型,并运用Gambit软件对4种模型分别进行网格划分.利用Fluent软件对端面流场进行数值模拟,得到流场的压力分布、速度分布以及泄漏量、气膜开启力.同时对节流孔直径与气膜推力泄漏量比值进行优化,获得最佳结构参数.数值结果表明:端面压力在节流孔处最高,向四周逐渐下降,密封气在流经节流孔后形成显著的压力降,随节流孔径的增大泄漏量上升;随节流孔径的增大气膜推力增大.  相似文献   

18.
高速角接触球轴承腔内气相流动与传热特性研究   总被引:1,自引:0,他引:1  
针对高速运转滚动轴承腔内空气在接触区周围形成的高压区阻碍润滑介质进入,从而导致供油效率降低的问题,以B7008C角接触球轴承为研究对象,考虑轴承几何结构细节,建立了角接触球轴承腔内气相流动模型,采用旋转坐标系描述轴承各组件运动,分析滚动轴承在不同转速与保持架结构参数下的气相流动。用该模型分析了轴承腔内气相流场,揭示了轴承公转、钢球自旋、保持架结构等因素对轴承腔内气相流型与传热效率的影响规律。结果表明:随着公转转速升高,气流速度升高,轴承腔内压差增大;高速下钢球的自旋效应使轴承腔内气压升高,分布不均匀性加剧;保持架兜孔形状、兜孔结构等参数影响换热效率与压力场分布,随兜孔间隙增大,保持架对流换热系数升高。轴端贴近轴承内圈处是配置供油单元出口的理想位置。  相似文献   

19.
针对船用水润滑橡胶轴承在非均匀磨损情况下的润滑特性,首先给出非均匀磨损情况下磨损区域的几何模型,在综合考虑橡胶衬层磨损和弹性变形的情况下建立水润滑橡胶轴承的弹流润滑模型,然后基于有限差分法离散雷诺方程并采用逐次超松弛迭代法求解水膜压力,分析非均匀磨损对水润滑橡胶轴承润滑特性的影响。结果表明:非均匀磨损使轴承的水膜厚度从轴承的前端(磨损厚度最小)到轴承尾端(磨损厚度最大)逐渐增加;水膜压力峰值相应地从轴承的前端到轴承尾端逐渐降低。水膜压力峰值发生的位置和水膜破裂的位置均延后,并且在轴承尾端延后的角度较大。在相同偏心率的情况下,随着最大磨损厚度增加,水膜合力(即承载力)、偏位角和摩擦力均减小。在相同载荷情况下,随着最大磨损厚度增加,轴颈的偏心率增加。发生非均匀磨损后水膜速度不再关于轴承中间截面对称分布,水膜合力的作用位置向轴承前端偏移,同时产生一个较小的附加合力偶,合力作用位置的偏移量随着最大磨损厚度和偏心率增加而增加。  相似文献   

20.
以α-SiC和β-SiC粉末为原料,羧甲基纤维素为造孔剂,制备了多孔SiC陶瓷.探讨了烧结温度、成型压力和造孔剂含量对SiC陶瓷的气孔率、显气孔率以及弯曲强度的影响,研究了用不同渗透率的多孔SiC陶瓷制备气体静压轴承的承载能力和静态刚度.结果表明:在高温下,β-SiC转变为α-SiC,同时,通过α-SiC的蒸发-凝聚过程实现了SiC陶瓷的烧结,并形成无收缩自结合结构;试样的气孔率和显气孔率随烧结温度和成型压力的增加而略有降低,但弯曲强度却增大;造孔剂含量越高,试样的气孔率和显气孔率越大,弯曲强度越低.添加质量分数为10%的造孔剂,经250MPa冷等静压成型,在2 400℃下制备的试样气孔率和显气孔率分别为28.91%和24.03%,渗透率为7.74×10-13 m2,弯曲强度为63.8MPa.因此,多孔SiC陶瓷的渗透率越低,利用它制备的气体静压轴承的承载能力越低,静态刚度就越高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号